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Abstract 

 

 

 Chapter one and two introduce the raison d’etre for the research conducted and a 

background for the methods employed herein. Chapters three and four focus on the study of 

alanine, and the effects of solvation. Chapters five and six explore fragmentation models from 

development to general use. Chapter seven focuses on the use of molecular dynamics for 

solution phase chemical phenomena using the effective fragment potential. Chapter eight 

provides a general overview and summary of the projects explored in the dissertation. 
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A BRIEF HISTORY OF SCIENCE AND CHEMISTRY
1 

 

  Chemistry was certainly not the earliest pursuit of modern man. The initial 

expressions of mankind described little more than experiences of survival. These can be 

seen in cave paintings and carvings beginning 40,000 years ago, and they have been 

observed wherever mankind spread.
2
 It was not until nearly 20,000 years ago that man 

made the first known expression of abstract thinking, the Ishango bone.  The Ishango 

bone has a series of hash marks, whose meaning died with its creator. Theories of basic 

mathematical calculations or a lunar calendar have been proposed, but it is certain that 

whatever the meaning, the marks represent the beginnings of man’s use of abstract 

symbols to represent ideas.
3
 

 However, mankind’s journey toward scientific discovery took its greatest step 

forward with the agricultural revolution. Wherever there was plentiful water, grains, and 

domesticated animals, mankind had the time to think about the world around them.
4 

Several examples include India, which by the seventh century had made significant 

advances, including basic atomic and gravitation theories, along with the development of 

the Hindu-Arabic numeral system that included zero.
5
 Early Chinese cultures created 

their own numerical systems and the abacus, and documented the first known solar 

eclipse.
[6]

 In Babylon as early as 1900 BCE, Pythagorean triplets were recorded well 

before an abstract theory was developed.
7
  

 Most current scientific traditions, however, can be traced to the Hellenic world in 

Greece, where Socrates devoted his time to teaching philosophical ideas. It was his 

students though, especially Aristotle, who took his traditions and pragmatic style to apply 
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philosophy to the natural world. Aristotle’s establishment of the first college is perhaps 

the contribution most relevant to a dissertation introduction. 

Philosophical era 

 The first chemists, motivated no doubt by practicality, sought an understanding of 

fire, which held a central part in ancient cultures, as it was used in food and tool 

preparation. Two ancient Greeks, Democritus and Leucippus, put forth the concept of 

atoms, atomisim, in 440 BCE, as told by the Roman Lucretius in De Rerum Natura. The 

co-discovery by the Indian philosopher Kanada also explained an atomicist worldview in 

the Vaisheshika Sutras. Both theories were purely philosophical in nature and lacked any 

empirical proof and were discounted in their cultures.
8
 Aristotle held the best-known 

contempt of atomism in 330 BCE.
8b

 

 Metallurgy and alchemy were also areas of early interest in chemistry. The 

discovery of alloys is in fact the definition of the Bronze Age. The preciousness of gold 

gave rise to the study of alchemy in Egypt as early as 2600 BCE.
9
 Belief in transmutation 

was present for some time throughout Europe holding the imagination of philosophers 

such as Albertus Magnus and Thomas Aquinas in the dark ages of European culture. 

Muslim scholars such as Avicenna, however, correctly asserted that alchemy was a 

pseudoscience: 

"Those of the chemical craft know well that no change can be effected 

in the different species of substances, though they can produce the 

appearance of such change." 
9
 

 It was from the Byzantine capital of Constantinople that science and chemistry 

continued to be studied during the dark ages in Europe. Due to the work of Muslim 
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scholars who kept the spirit of scientific inquiry alive, much of what had been lost could 

be reintroduced in the European renaissance. 

Gas Theory / Atomism of Chemistry 

 During the renaissance, Descartes began conducting experiments and separated 

science and humanities.
10 

Science saw development again in chemistry with Robert Boyle 

who brought European thinking into the atomism tradition. Boyle was responsible for a 

theory of gases, which bears his name.
11

 Daniel Bernoulli explained Boyle’s law of gases 

via a kinetic theory of gases which rationalized pressure in terms of momentum.
12

 

Despite Boyle’s early work, it is Antoine Lavoisier who is often thought of as the modern 

father of chemistry.  Lavoisier proffered the law of conservation of mass, refuting the 

phlogiston theory of combustion.
13

 

 John Dalton’s talk in 1803 to the Literary and Philosophical Society in London 

proposed an atomic view of gases, in which a thin warming shell surrounds spherical 

atoms. Chemical operations were considered to be the processes of unification or 

separation of these thin warming shells. 

 Amadeo Avagadro developed Avagardo’s law, which allows atomic weights of 

gasses to be calculated from their masses.
14

 In order to reconcile Dalton’s atomic theory 

with Joseph Louis Gay-Lussac's 1808 law on volumes and the combining of gases, 

Avagadro explicitly defined molecules and atoms. Initial theories of atomic connections 

were essentially ionic bonds, though this contradicted Avagadro, who stated that the most 

basic gases were homogenous diatomic species. In 1860 the first International Chemistry 

Congress in Karlsruhe, Germany was held. Avagadro’s student, Stanislao Cannizzaro, 

presented a paper on all the atomic weights, which were summarily accepted.
15

 This 
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allowed further classification and led to Dmitri Mendeleev’s creation of the periodic 

table. Of note, Johann Josef Loschmidt first calculated what is currently known as 

Avagadro’s number.
16

 

 The German chemist August Wilhelm von Hofmann presented to the Royal 

Institution of Great Britain in 1865 a molecular model, which today would be referred to 

as ball and stick. Though the geometries were incorrect, his proposed coloring convention 

is still widely used. In 1874, Jacobus Henricus van 't Hoff and Joseph Achille Le Bel 

independently proposed the phenomenon of optical activity.
17

 Following early work of 

Jean Biot,
18

 they explained the phenomenon by presupposing that chemical bonds 

between carbon atoms and their neighbors were directed towards the corners of a regular 

tetrahedron. This led to the development of Emil Fisher’s 3-D representation of 

bonding.
19

 

 In 1881, in what became a famous Faraday Lecture, the German physicist 

Hermann Ludwig Ferdinand von Helmholtz came to the conclusion that whatever 

chemical affinity may be, it would have to be electric in its nature. In the case of salt-like 

affinities such as KCl or HF, this could be explained. In fact, Svante Arrhenius was the 

originator of ionic dissociation of a bond in water.
20

 Still, nobody had hypothesized how 

electric forces could contribute to bonding in homogenous diatomics.  

 In 1898, Ludwig Boltzmann explained the phenomenon of gas phase molecular 

dissociation, and in doing so drew one of the first rudimentary, yet detailed atomic orbital 

overlap drawings.
21 

Noting first the known fact that molecular iodine vapor dissociates 

into atoms at higher temperatures, Boltzmann proposed that one must explain the 

existence of molecules composed of two atoms, whose chemical attraction arose from a 
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relatively small region on the surface of the atom called the sensitive region, which 

formed a bond when overlapped.  

Electronic Chemistry 

  Joseph John Thomson discovered, using a Crookes tube, that cathode rays could 

be deflected by an electric field. He proposed that the rays were not waves, but negatively 

charge particles he referred to as corpuscles, which later became known as electrons. 

Thomson observed that corpuscles emerged from the atoms in an electrode, and thus 

atoms were divisible. His representation of the atom is referred to as the plum pudding 

model, in which the corpuscles were distributed in a uniform cloud of positive charge.
22

 

 In Ernest Rutherford’s gold foil experiment, a small portion of the alpha particles 

were deflected, indicating a small, concentrated positive charge, giving rise to a model of 

the atom resembling the planetary orbits.
23

 A main point of both of these experiments is 

that chemical activity comes from the electrons and not the nucleus. Electronic motion 

gives rise to observable chemical properties such as emission spectra, characterized by 

Gustav Kirchhoff and Robert Bunsen. Rutherford’s model was able to reproduce Johann 

Jakob Balmer’s hydrogen emission spectrum.
24

 

 In 1916 Niels Bohr explained the orientation of the electrons around the nucleus 

mathematically via an exclusion principle.
25

 Wolfgang Pauli was able to expand on his 

idea by defining an unknown state, electron spin, which allowed a priori orbital 

definitions along with periodicity of the elements.
26

 Concurrently, Arnold Sommerfeld 

had created a classical quantum theory, which was able to predict some chemical 

properties.
27

 However, the phenomenon that holds atoms together was still unexplained. 

Ideas of valence attempted to explain atomic bonds. Richard Abegg first postulated a rule 
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of eight, leading to the idea of valence shells.
28

 Gilbert N. Lewis developed the idea of 

electron pairs as the basis of chemical bonds, which is described in his 1923 book 

Valence and the Structure of the Atom:
29

 

‘‘The new theory, which includes the possibility of complete 

ionization as a special case, may be given definite expression as 

follows: Two atoms may conform to the rule of eight, or the octet rule, 

not only by the transfer of electrons from one atom to another, but also 

by sharing one or more pairs of electrons. The electrons which are held 

in common by two atoms may be considered to belong to the outer 

shell of both atoms.’’ 

 

Quantum Chemistry 

 The age of quantum chemistry began in 1926 when Erwin Schrödinger took the 

basic wave equation and enforced boundary conditions to reproduce the hydrogen 

spectra.
30

 Walter Heitler and Fritz London published the first calculations on H2 in 

1927.
31

 This first phase of quantum descriptions of chemical bonding lasted from 1927-

1935. In this era several attempts were made to rectify known valence theory with 

quantum calculations. Linus Pauling’s book, The Nature of the Chemical Bond,
32

 

suggested the concept of hybridization and Valence Bond (VB) theory. Concurrently, 

Robert Mulliken and Friedrich Hund attempted to understand diatomic molecular spectra. 

Their explanation of molecular orbitals (MOs) allowed for correlation diagrams and 

qualitative understanding of MO energies.
33 

Extension of this method by John Lennard-

Jones represented bonding MOs as a linear combination of atomic orbitals (AOs).
34

 With 
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the development of quantum theory, the nature of the chemical bond could finally be 

explained, though it took nearly thirty years for a generally accepted answer.  

  John Slater used the virial theorem,
35 

in order to show that as two atoms come 

together the potential energy will decrease and the kinetic energy will increase; therefore, 

the electrons will accumulate in the bonds because of the overlap of orbitals, suggesting 

that a lowering of the potential energy is the cause of the bonding.
36

 Hans G. A. Hellman 

noticed that in the Heitler-London formulation, the potential energy increased and the 

kinetic energy decreased.
37 

He was the first to realize that the basis of chemical bonding 

came from the lowering of the kinetic energy. Klaus Ruedenburg showed in his 1962 

paper and subsequent papers
38

  that covalent bonding arises mainly from the constructive 

interference contribution to the kinetic energy. In a bonding system there is localization 

near the nuclei; this lowers the potential energy and raises the kinetic energy. 

Delocalization into the bond region increases the potential energy and lowers the kinetic 

energy. This lowering of the kinetic energy is the origin of the chemical bond. The 

lowering of the potential energy, via the wavefunction contraction, is not the ultimate 

source of chemical bonding, as previously believed. Theoretical chemistry has now 

moved on to describe the basis of several conceptual theories such as: hydrogen bonding, 

charge transfer, bond polarity, ring strain and other chemical phenomena which are still 

the pursuit of modern theoretical chemists. 
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GENERAL INTRODUCTION 

I. General Overview 

Solution phase chemistry is a major component of many life forms on earth. When 

considering biological systems the interactions of water with the solute are involved many 

reactions. Initial studies contained herein consider how the effects of water on the solute 

change chemical properties of the solute. Both discrete and continuum models of solvation 

are explored to help quantify when each are useful.  The discrete method employs Monte 

Carlo simulations to sample the solvent configuration space, and molecular dynamics 

simulations to study bulk properties. For alanine, the exploration of discrete solvation shows 

the transition from neutral to zwitterion form and finally to a full solvation shell. Further 

development work on molecular dynamics shows the promise of the effective fragment 

potential as a means to study the properties of solvents other than water. The chapters on the 

systematic fragmentation method show how the correct physical treatment of the chemical 

subunits and the interactions between them allow for the fragmentation of a molecule in a 

way that gives nearly linear scaling with an accuracy of ~1 kcal/mol. 

II. Theoretical Methods 

 This section presents a brief overview of the theoretical methods that will be 

considered throughout later chapters. Within this dissertation three main types of models are 

used; quantum mechanics, molecular mechanics and fragmentation models. Quantum 

mechanics (QM) describes a molecule in terms of the probability density of the electrons 

surrounding the positively charged nuclei. Molecular mechanics (MM) treats a molecule as a 

collection of atoms held together by (often rigid) bonds with the energies calculated via 
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classical potential energy functions. Fragmentation models allow for large systems to be 

broken into smaller, chemically meaningful, fragments, treated individually with QM, and 

then added back together in order to capture the physical properties of the composite system. 

Much of the work described herein combines these methods to solve problems that are 

inaccessible by a fully QM approach. A brief description of each method will be given 

below. 

 

A. Quantum Mechanics (QM) / Schrödinger Equation
 

 Since electrons display both wave and particle characteristics, they must be 

described in terms of a wavefunction,! .  The time-dependent Schrödinger
3
 equation 

postulates that the state of !  will change with time as: 

 

 

!(r,t)"(r,t) = i!
#"(r,t)

#t
         (1) 

where !(r,t) is the Hamiltonian operator, i  is (-1)
1/2

, and 
 

! =
h

2!
 

 A simplification of this procedure is available when the time variable is separable from the 

spatial variables.  This may be expressed for our purposes as the potential energy of the 

system being time independent. This simplification, that is used in most electronic structure 

methods, is the time independent Schrödinger Equation.
1         

                                                                                                    

H! = E!                
  

(2) 

Eq. (2) is an eigenvalue equation. The Hamiltonian operator is composed of both 

kinetic (T) and potential (V) energy operators for all particles: 
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Ĥ = T̂
N
+ T̂

e
+ V̂

NN
+ V̂

Ne
+ V̂

ee
         (3) 

where T̂
N

 is the operator for the nuclear kinetic energy (KE), T̂
e
 is the operator for 

the electronic KE, V̂
NN

represents the nuclear-nuclear repulsive potential energy (PE), 

V̂
Ne

is the nuclear-electronic attraction  PE, and V̂
ee

 is the electron-electron repulsion 

PE.   

 A common approximation in quantum mechanics is the Born-Oppenheimer
2
 

approximation. Since a single proton is ~1800 times heavier than electrons, it is a good 

approximation that electronic motion will instantaneously follow the nuclear motion.  This 

allows an electronic-nuclear separation of the Hamiltonian. Within the Born-Oppenheimer 

approximation, the nuclei are assumed to remain fixed when one solves for the electronic 

motion (thus, T̂
N
= 0 and V̂

NN
 is a constant). This allows the motions of the nuclei and 

electrons to be treated separately, due to the order of magnitude difference in their respective 

masses. The Schrödinger equation then may be written as: 

H
e
(R)!

e
(R) = E

e
(R)!

e
(R)          (4) 

where R represents the nuclear coordinates and H
e
(R) is the electronic Hamiltonian given (in 

atomic units) by: 

He = !
1

2
"i

2
!

ZA

riA
+

1

rijj<i

n

#
i

n

#
A

N

#
i

n

#
i

n

#        (5) 

where n is the number of electrons, N is the number of nuclei, !
i

2 is the Laplacian operation 

for the ith electron, r
iA

and rij  are the distances between electron i and nucleus A, and 

between the ith and jth electron respectively. Z
A

is the nuclear charge of the nucleus A. 
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A further approximation is needed to deal with separation of coordinates in the rij  or 

electron-electron repulsion term in Eq. (5). This is done by using a mean field approximation 

in Hartree Fock theory,
3
 in which each electron interacts with an average field representing 

all other (n-1) electrons. 

B. HF (Hartree Fock) 

Hartree Fock theory has become the base level of most electronic structure 

calculations. This is due to its qualitative reliability and computational feasibility. HF is 

based on the independent electron approximation, in which an antisymmetrized product of 

one-electron functions (spin orbitals ! ) gives the electronic wave function. Due to the 

antisymmetry requirement (Pauli Principle) for electrons, the wavefunction is expressed as a 

Slater determinant: 

 

!
e
= (n!)

"
1

2

#
1
(e
1
) #

2
(e
1
) … #

i
(e
1
)

#
1
(e
2
) #

2
(e
2
) … #

i
(e
2
)

! ! " !

#
1
(e

i
) #

2
(e

i
) … #

i
(e

i
)

       (6) 

In Eq.(6) !
i
 is the ith molecular spin orbital and e

i
 is the ith electron. The variational 

principle when applied to Eq. (6) leads to the Hartree-Fock equations: 

F̂!
i
= "

i
!

i
           (7) 

where F̂ is the Fock operator , !
i
is the energy of the ith orbital!

i
.  

The Fock operator depends on the orbital !
i
 and therefore Eq. (7) must be solved iteratively 

to self-consistency. An initial guess of !
i
 facilitates the process. This initial guess is often 

obtained using Huckel theory.
4
 F̂  is thus constructed and Eq. (7) is used to define a new set 
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of !
i
, which begets a new F̂ . This cycle is repeated until the orbitals used to construct F̂  are 

the same as those obtained from solving Eq. (7). 

As analytic solutions are preferred to numerical solutions, it is the expression of !
i
as a 

linear combination of atomic orbitals (LCAO)
5
 that facilities an analytic solution.   

!
i
= Cµi"µ

µ

#           (8) 

where the Cµi  are LCAO coefficients, and the !µ  are atomic orbitals (basis functions). An 

infinite basis set limit gives the exact HF wavefunction and energy. However, since one 

typically employs a finite basis set, the LCAO approach is an approximation. These atomic 

orbitals !µ  are usually expressed as a linear combination of Gaussian functions: 

!µ (r) = Npx
l

pyp
m
zp
n
e
"# pr

2

p

$          (9) 

where Np  is a normalization constant l, m, n are integers whose sum is the angular 

momentum, and ! p  is a coefficient which determines the size of the Gaussian function. 

 Correlation of electrons does exist in the Hartree Fock method for electrons of the 

same spin. This correlation is due to the Fermi hole, or Pauli exclusion principle, which 

requires electrons of like spin to remain apart; however, electrons of opposite spin are not 

correlated. Electron repulsion in HF is overestimated due to this lack of electron correlation. 

The lack of electron-electron correlation of opposite spin electrons results in an energy 

difference between the energy of the HF limit and the exact non-relativistic energy. This 

difference is often referred to as the electron correlation energy. 

 There are many approaches to add electron correlation effects to the HF 

wavefunction.  These include configuration interaction (CI), perturbation theory (PT), 
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coupled cluster (CC) theory, and for short-range correlation effects density functional theory 

(DFT). Those methods, which have been utilized in the dissertation, will be discussed below. 

C.DFT (Density Functional Theory) 

Density functional theory
6
 (DFT) is based upon the fact that the ground state electronic 

energy of a system can be described via the electron density. This is known as the 

Hohenberg-Kohn
7
 theorem. It is attractive because the density p depends on only three 

coordinates, whereas the wavefunction depends on 3n coordinates for n electrons. The 

transformation of the electron density to any property including the electronic energy is 

unique, yet the exact form of such a density functional remains unknown. The holy grail of 

DFT is to design a universal functional E[p] that expresses the energy as a function of the 

exact density. The most common approximation is based on the Kohn-Sham approach 

(similar to the independent particle model in Hartree-Fock theory) in which one constructs 

exchange-correlation functionals that are designed to mimic the exact exchange and 

correlation energies. There are five hierarchal rungs defined as the DFT "Jacob’s ladder" by 

Perdew in which functionals may be classified.
8 

The first rung is the local density 

approximation (LDA), in which the energy is expressed only in terms of the electron density.  

The second rung is the generalized gradient approximation (GGA), in which the energy 

depends on both the electron density and the density gradient. The third rung is the meta-

GGA, in which some parameterized fraction of HF exchange is taken to be a component of 

the exchange functional. The fourth rung is the hyper GGA, adds the exact exchange energy 

density, a nonlocal functional of occupied Kohn-Sham orbitals. This extends the GGA 

approximation in such a way that the energy depends on the electron density, the density 

gradient, and the kinetic energy density. Hybrid functions are in a sense fourth rung, though 
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they do not use the exact exchange. The fifth rung extends the hyper GGA by combining 

exact exchange with exact partial correlation, thereby depending on both the occupied and 

unoccupied Kohn-Sham orbitals. This dissertation employs the fourth rung via B3LYP
9
 

chosen due to the popularity of the B3LYP functional among chemists.  

D. MPn (Perturbation Theory) 

Perturbation theory
10,11 

improves the energy relative to that of a reference wave 

function (e.g., HF) by including dynamic electron correlation via a perturbing Hamiltonian, 

H
PT

, which should be small perturbation of the zeroth order Hamiltonian H
0

. This may be 

described mathematically by defining the perturbing Hamiltonian in two parts: the larger 

unperturbed component from HF theory, and the smaller (often external) perturbation, V, 

where !  is an arbitrary real parameter. 

H
PT

= H
0
+ !V         (10) 

Here we consider Rayleigh-Schrödinger perturbation theory through second order. A Taylor 

series is employed to expand the energy and wave function using the n-th state HF 

wavefunction, !
i

(0) . 

!
i
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i
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+ ...
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i

(2)
+...

       (11) 

Collating powers of!  and substituting equation (11) into the Schrödinger equation Eq. (2) 

yields:  

H
0
i = E

i

(0)
i

H
0
!

i

(1)
+V i = E

i
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!
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i

    (12) 
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Multiplying these equations by the zeroth order waver function and integrating over all space 

yields the energy in terms of the perturbation. 

E
i

(0)
= i H

0
i

E
i

(1)
= i V i

E
i

(2)
= i V !

i

(1)

          (13) 

This expansion is then truncated at the nth order give the nth order perturbation.  

 
E

MPn
= E

0

(0)
+ E

0

(1)
+ E

0

(2)
!+ E

0

(n)         (14) 

 In second order Møller-Plesset
11

 (MP) perturbation theory the perturbation takes the form: 

V = H ! F ! "
0
H ! F "

0
        (15) 

where !
0
 is a normalized Slater determinate of the Fock operators lowest eigenfunction. The 

unperturbed Hamiltonian takes the form of the shifted Fock operator: 

H
o
= F + !

0
H " F !

0
.         (16) 

Since the Slater determinate!
0
is an eigenfunction of the Fock operator (F), the zeroth-order 

energy is the HF energy: 

E
MP0

= E
HF

= !
0
H !

0
.        (17) 

The first order MP energy is formally zero. 

E
MP1

= !
0
V !

0
         (18) 

Therefore MP correlation comes from the second order energy. The MP2 formulation is 

based on the double excitation from occupied to virtual orbitals.     

EMP2 = !
1

4

ia jb
2

"a + "b ! "i ! " jab

#
ij

#        (19) 

Where: 
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ia jb = ia jb ! ib ja , and ia jb = dx
1
dx

2! xi
*
(x
1
)xa

*
(x

2
)r
12

"1
x j (x1)xb (x2 ) . (20) 

Where a,b are virtual orbitals and i,j are occupied orbitals. The work discussed in this thesis 

will employ second order perturbation theory (MP2) in order to recover most of the dynamic 

correlation energy contribution. 

 

E. CCSD(T) (Coupled Cluster Singles, Doubles, and Perturbative Triples) 

Coupled cluster (CC) theory is a many body approach to obtaining the electron correlation 

correction to HF theory.  In perturbation theory all types of corrections (one particle, two 

particle, etc.) are added to a given order, to the reference wavefunction.
12

 Conversely, CC 

methods attempt to include all corrections of a given type to an infinite order.  The coupled 

cluster wavefunction !
CC

can be written as 

!
CC

= e
T
!

HF
          (21) 

The coupled cluster operator T is given by: 

 
T = T

1
+ T

2
+ T

3
!+ T

n
.        (22) 

Where Ti  may be defined via second quantization: 

T
1
= t

i

a
â
i

a

!
i

! â
a

†
          

T
2
=
1

4
tij
ab
âiâ j

a,b

!
i, j

! âa
†
âb
†         (23) 

T
3
=
1

8
tijk
abc
âiâ j âk

a,b,c

!
i, j ,k

! âa
†
âb
†
âc
†          

where  i,j,k  are occupied orbitals and a,b,c are unoccupied orbitals. The â and â†  are 

creation and annihilation operators and t
i

a are the unknown coefficients for !
CC

. The Ti 



www.manaraa.com

19 

 

operator acts on the HF wavefunction !HF to give all of the i-particle interactions.  Therefore, 

If Eqn. 14 is truncated at the triples term T3, the method is CCSDT, adding a quadruple 

yields CCSDTQ and so on. There are several hybrid approaches to truncate at a lower order 

to preserve accuracy and computational efficiency.  One of the most popular is CCSD(T) in 

which the triples contribution is evaluated by perturbation theory and then added to the 

CCSD result. 

F.  Molecular Mechanics 

 In contrast to QM methods, molecular mechanics (MM) does not explicitly consider 

electrons. Rather, molecules are considered to be a collection of points (atoms) connected by 

a potential represented by a spring. Thus, no Schrödinger equation needs to be solved, and 

most MM methods scale linearly to quadratically. Dynamical properties are treated via 

Newtonian mechanics. The energy is expressed as a sum of stretching, bending, and torsional 

motions, plus non-bonded atom-atom (Van der Waals and electrostatic) interactions, along 

with the corresponding cross terms. Parameters (e.g., vibrational force constants) for these 

terms are set to experimental data or to more accurate (e.g., MP2) computational data 

 Non-bonded interactions, such as those found in liquids, solvated molecules or 

between different parts of a large molecule, are a focus of this dissertation. Non-bonded 

interactions can be composed of Van der Waals interactions, electrostatic interactions, and 

exchange repulsion.  The Van der Waals energy describes the attraction between atoms that 

are not covalently bonded. The Lennard-Jones (LJ) potential
13 

incorporates an approximation 

to the Van der Waals energy in an r
-6 

term. 
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        (24) 

where ! and " are LJ parameters and r describes the inter-atomic distance.  This potential 

gives the strong, repulsive short-range interaction (r
-12

), as well as the long-range attraction 

(r
-6

). The latter is the lead term in the dispersion expansion (See Eq. 29). 

 The internal distribution of negatively charged electrons and positively charged nuclei 

gives rise to electrostatic interactions.  The simplest approach to describing such interactions 

is to assign a point charge to each point (typically an atom) in a MM model. The Coulomb 

potential depends on the interaction between point charges: 

 

V
el
(rab ) =

qaqb

rab
         (25) 

where qa and qb are the charges on points a and b, respectively, and rab is the distance 

between those points. 

 Many common solvent methods (for water) describe the interaction potential as a sum 

of Coulomb interactions between all charges and a single Lennard-Jones interaction between 

oxygen atoms. 

 

V =
qaqb

rabab
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      (26) 

In Eq. (26), qa and qb are again the charges on each atom a and b, in the system, rab is the 

distance between points a and b, rOO is the distance between two oxygen atoms, and "O and 

!O are parameterized for each model. 
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 Polarization has been included in several modern force fields, where an induced 

dipole moment (P) of a point is related to the electric field(E) via the electronic 

polarizability(! ). 

P = !E  

Implementations have been based on point charges,
14

 density,
15

 distributed multipoles,
16

 

among other approaches.
17

 

 

G. EFP (Effective Fragment Potential) 

The effective fragment potential (EFP) model has been implemented at the HF,
18

 

DFT,
19 

and MP2
20

 levels of theory. This has been accomplished using the EFP1 formalism, in 

which the exchange repulsion and dispersion terms contain fitted parameters. The EFP1 

method has been developed only for water. A general EFP2
21

 implementation contains no 

fitted parameters and is therefore applicable to any species. The EFP1 method contains one-

electron potentials, which are added to the ab initio electronic Hamiltonian of the solute. The 

first of these terms represents the Columbic (electrostatic) interactions between two 

fragments (EFP-EFP) or between a fragment and quantum mechanical molecule (EFP-QM), 

screened by a charge penetration function that corrects for overlapping electron densities. 

The second term represents the induction (polarization) EFP-EFP or EFP-QM interaction. 

The third term is fitted to the water dimer potential. It contains those terms not accounted for 

in the first two: exchange repulsion, charge transfer. Dispersion is treated as a separate fourth 

term in the MP2 version. The first two terms are determined directly from QM calculations 

on the monomer. The EFP1 formulation for an EFP solvent molecule  and a QM 

coordinate s as follows: 

µ
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V
el
(µ, s) = V

k

Elec

k=1

K

! (µ, s) + V
l

Pol
(

l

L

! µ, s) + V
m

Rem
(µ, s)

m

M

!
                                          (27) 

The three terms on the right hand side of Eq. (27) represent the Coulomb, induction, and 

remainder terms respectively, where K, L and M are the number of corresponding expansion 

points. 

The Coulomb interaction is represented by a distributed multipolar analysis
22

 (DMA) 

of the molecular density, using multipoles through octopole moments at K=5 expansion 

points for the water molecule (nuclear centers and bond midpoints). The DMA is a pointwise 

model, thus it cannot account for the overlap of the charge densities between two molecules, 

as they approach each other. Correcting for this quantum effect requires the coulomb 

potential to be multiplied by a distance dependent cutoff function (charge penetration term), 

which is added to the EFP-EFP charge-charge interaction,
23

 and to the EFP-QM interaction. 

 The polarization/induction term in Eq. (26) is treated by a self-consistent scheme 

using distributed localized molecular orbital (LMO) polarizabilities.  The molecular 

polarizability tensor is expressed as a tensor sum of the LMO polarizabilities, centered at the 

LMO centroids. For water, four such LMOs are used: two O lone pairs, and two O-H bonds. 

The polarization energy is then iterated to self-consistency within the SCF cycles. 

 The third term in Eq. (26) consists of exchange repulsion, charge transfer, and some 

short-range correlation contribution (in the DFT version). The dispersion (in the MP2 

version), is a separate term. This term for the EFP-QM region is represented as a linear 

combination of Gaussian functions expanded at the atom centers. For the EFP-EFP 

interaction a single exponential is used and the expansion is done at the atom centers and the 

center of mass, in order to better capture the angular dependence of the charge transfer 
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contribution. The coefficients and exponents of the Gaussian and exponential functions were 

optimized, by fitting to water dimer structures, chosen to represent a selection of water-water 

orientations and O-O distances.  

The generalized effective fragment potential (EFP2) method can be used to represent any 

molecule of interest. In EFP2 all terms are derived from first principles with no empirically 

fitted parameters. The interaction energy includes Coulomb, polarization, exchange-

repulsion,
18

 dispersion,
19

 and charge transfer.
24

 

E = Ecoul + Eind + Eexrep + Edisp + Ect.       (28) 

 

 The exchange repulsion interaction between two fragments is derived as an expansion 

in the intermolecular overlap. When this overlap expansion is expressed in terms of frozen 

LMOs on each fragment, the expansion can reliably be truncated at the quadratic term. This 

term does require each EFP to carry a basis set. Since the same basis set is used to generate 

the multipoles and the molecular polarizability tensor, EFP calculations are basis set 

dependent. The dependence of the computational cost of an EFP calculation on the basis set 

appears primarily in the initial generation of the EFP. Since the basis set is used only to 

calculate overlap integrals, the computation is very fast and quite large basis sets are realistic.  

 

Dispersion interactions are often expressed by an inverse R expansion,  

Edisp = CnR
!n

n

"
         (29)

 

where the coefficients Cn may be derived from the (imaginary) frequency dependent 

polarizabilities integrated over the entire frequency range.
19 

The first term in the expansion, 

n=6, corresponds to the induced dipole-induced dipole (Van der Waals) interactions. In the 
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EFP2 method, this term is evaluated using the time-dependent HF method. In addition the 

contribution of the n=8 term is estimated. The C6 coefficients are derived in terms of 

interactions between pairs of LMOs on the two interacting fragments.  

 The charge transfer interaction is derived using a supermolecule approach, in which the 

occupied valence molecular orbitals on one fragment are allowed to interact with the virtual 

orbitals on another fragment. This interaction term leads to significant energy lowering in ab 

initio calculations on ionic or highly polar species when incomplete basis sets are employed. 

An approximate formula
24

 for the charge transfer interaction in the EFP2 method was derived 

and implemented using a second order perturbative treatment of the intermolecular 

interactions for a pair of molecules at the Hartree–Fock level of theory. To date, the EFP-QM 

interactions have not been implemented for dispersion or charge transfer. 

H. PCM (polarizable continuum model) 

For theoretical studies of condensed phase chemistry, continuum solvent models have 

been employed in various forms.
26

 Continuum models treat the bulk solvent as a dielectric 

medium without distinct structure. This is different from discrete models like EFPs in which 

individual molecules are physically represented. Instead, in continuum models a distribution 

of charges is used represent the bulk solvent. The polarizable continuum model (PCM)
27,28

 

calculates this charge distribution using ab initio electronic structure theory. The solvent-

solute interface is described by a set of interlocking spheres, which are centered, on 

individual atoms. These spheres are constructed from arbitrarily small interlocking geometric 

shapes (tesserae). Poisson statistics are then employed for each tessera, thus yielding an 

apparent surface charge (ASC) at the center of each tessera. Through parameterization of the 
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solute cavity, this model can generally reproduce experimental solvation energies to within a 

few kcal/mol.
27,28

 

In order to actually calculate the ASC a vector, q, is determined by the matrix equation: 

Cq = g            (30) 

where the vector g is a function of the solute electrostatic potential vector, V, and C is a 

geometric matrix.  Both g and C have different forms for different tessellation methods and 

different PCM formalisms. The implementation in GAMESS is based on GEPOL,
29 

which 

uses triangular tesserae. For the isotropic integral equation formalism PCM (IEF-PCM)
26

 the 

equations describing C and g are: 

C =
A

2
! D"
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%
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!1 ( +1

( !1
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%
&'
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!1
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!1       (31) 

g = !V           (32) 

Where: 

Aii = a, Aij = 0          (33)                                                                      
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and  
 

!
r
i
 , a

i
, n̂ j  , Ri  and V are, respectively, the center, area, orthogonal unitary vector, the 

sphere radius an solute electrostatic potential vector for tessera i .  

I. MC (Monte Carlo) 

The Monte Carlo methodology employed uses a Metropolis sampling method.
30 

The
 
Monte 

Carlo simulation causes one or more of the coordinates to be displaced in a random manner, 

after which the energy of the displaced system is evaluated. Acceptance of this geometry is 

guaranteed if the energy is lower than the previous geometry, while those geometries with a 

higher energy are accepted with a probability determined by the Boltzmann factor: 

Probability = e
(!E (ri )/kBT )         (36) 

where k
B

 is the Boltzmann constant and T  is the temperature. 

This procedure tends to select for energies that are only slightly higher than those in the 

previous steps. Simulated annealing.
31

 allows for the temperature to decrease systematically 

from a given initial value. A high initial temperature allows for greater freedom in exploring 

the potential energy surface, while the successive steps down in temperature should find the 

low energy structures. A local minimization procedure, basin hopping,
31

 may be used 

intermittently, allowing the Monte Carlo simulation to jump from local minimum to local 

minimum. 
 

J. MD (Molecular Dynamics) 

  Molecular dynamics simulations solve the Newtonian or Lagrangian equations of motion, in 

order to predict bulk properties of molecular systems. A system comprised of QM or MM or 

both is solved for a given time length. Early implementations used LJ potentials described in 

Eq. (24). Within the GAMESS program a MD code has been implemented for use with the 
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EFP and fist principles methods (HF, DFT, MP2). Integration (Figure 1) in the time domain 

is done via either the leapfrog
32

 or velocity Verlet
33

 method.  

 The original Verlet method
34

 is a direct implementation of Newton’s second-order 

equations of motion. Considering the positions(r(t)) and acceleration(a(t)), along with the 

positions of the previous step( r(t-!t) ), the positions at r(t+!t) can be elucidated. The Verlet 

equation for advancing in time is given by, 

r(t+!t)=2 r(t)- r(t-!t) + !t
2
•a(t).       (37) 

The Verlet methods may introduce numerical noise, because they add the small acceleration 

term to the difference between two large terms that depend on position, in order to generate a 

trajectory.
35 

Velocities are not directly considered in the Verlet approach. The leapfrog 

integration uses a half time-step in order to calculate positions and velocities as follows: 

r(t+!t)= r(t) + !t•v(t+1/2!t),         

v(t+!t)= v(t-1/2!t) + !t•a(t).        (38) 

The velocity Verlet method is able to minimize rounding error by storing the positions, 

velocity and acceleration at the same time, t. The velocity Verlet equation has the form: 

r(t+!t)= r(t) + !t•v(t) + 1/2 !t
2
a(t),        

v(t+!t)= v(t) + 1/2!t[ a(t) + a(t+!t)].        (39) 

Both the leapfrog and velocity Verlet methods are algebraically equivalent to the original 

Verlet method. 
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 Currently, three ensembles have been implemented in the GAMESS MD code: (1) 

The microcanonical ensemble (NVE) has a constant number of molecules (N), volume (V) 

and energy (E). (2) The canonical ensemble (NVT) in which N, V and temperature (T) are 

held constant. (3) The NVTp ensemble, an NVT with a pressure (P) bath giving an apparent 

constant pressure. The NVTp ensemble is an approximation to the Isothermal-Isobaric NPT 

ensemble. 

K. DRP (Dynamic Reaction Path) 

The dynamic reaction path
36

  (DRP) method is a classical trajectory approach, which 

is based on quantum chemical energies that are computed “on-the-fly”. There is no need for 

an a priori knowledge of the potential energy surface (PES). Energy is strictly conserved 

along the dynamic reaction path; therefore large step sizes are feasible. The initial dynamic 

reaction path method used the vibrational normal modes within GAMESS.  

By selecting specific modes and adding kinetic energy (in units of quanta) to one or 

more modes one may direct the reaction to desired products. However, mode-mode mixing 

often occurs, allowing energy that is initially applied to one mode to leak into other modes. 

Thus, the amount of energy added should be in excess of the reaction/decomposition barrier 

in order to induce a reaction. The DRP method is a direct dynamics method that uses ab 

initio gradients/forces for each step which in turn are used to solve Newton’s equations of 

motion and propagate the system   

L. FMO (Fragment Molecular Orbital) 

 The fragment molecular orbital (FMO) method
37-40

 was designed to reduce the 

scaling of fully QM methods by subdividing a system into fragments, while using a Coulomb 
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operator to treat the long-range interactions of the full system. The fragments in the FMO 

method are created electrostatically as shown in Figure 2. The FMO method assigns both 

electrons of the bonding pair to one fragment and none to the other. To avoid charged 

species, the deficient fragment has a proton reassigned to the electron rich species. This 

creates two neutral fragments indicated by the 1 and 5 in Figure 2. 

Each individual fragment (monomer) is calculated in the electrostatic potential (ESP) 

of the entire system. These monomers are iterated to self-consistency within the ESP. Many 

body effects are accounted for by the ab inito calculations of two fragments (dimers; called 

the FMO2 method) and three fragments (trimers; called the FMO3 method).  The FMO 

method evaluates the energy of a system by first calculating the initial electron density 

distribution of each monomer in the Coulomb bath of the system.  Then, the Fock operators 

for each monomer are created to calculate the monomer energies.  The ESP is converged by 

iterating the monomer energies to self-consistency. The dimer and trimer energies are not 

iterated to self-consistency. The FMO expression
 
for the total energy is given by: 

E = E
I
+

I

N

! (E
IJ
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N
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I
)} + ...  

where EI, EIJ, and EIJk are monomer, dimer, and trimer energies, respectively. Terms are 

subtracted to avoid double counting.  

 In order to capture solvent effects the FMO method has been interfaced with the 

effective fragment potential (EFP)
38

 method and the polarizable continuum model (PCM).
39
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The ability to use multiple wavefunction types for individual fragments is available through 

the multi-layer FMO (MFMO) implimentation.
40

 The FMO method allows the monomers to 

be described by a variety of methods (i.e., RHF, MP2, DFT, CC, MCSCF).  

 

M. SFM (Systematic Fragmentation Metho) 

The systematic fragmentation method
41-43

 (SFM) divides a molecular system into 

fragments while significantly decreasing the computational expense. It retains nearly the 

accuracy of a full ab initio calculation at the same level of theory.  The total energy of the 

larger system can be obtained through addition and subtraction of the contributions from 

overlapping sub-systems or “groups”.  

Within the context of the SFM, a molecule can be thought of as a collection of 

functional groups.  For example, ethanol contains three functional groups (CH3, CH2, and 

OH) in this framework, as shown in Figure 3. To divide the system into functional groups, 

single bonds must be broken. This process yields two fragments that are each assigned an 

electron from the bonding pair of the broken bond. A “cap” (hydrogen atom) is applied to the 

dangling bonds that are created by the fragmentation to avoid the creation of radical species. 

This hydrogen cap points in the direction of the broken bond at a chemically reasonable 

distance. By design, double or triple bonds are not broken, and the relevant atoms are kept as 

a part of one functional group.  For instance, after the addition of the hydrogen caps, the 

functional groups from ethanal, CH3CHO, would then be CH4 and CH2O.  

 As the separation between the breaks is increased, the accuracy increases, because the 

larger fragments give a more accurate description of the full system. In the limit, there is no 

fragmentation at all. The separation between broken bonds can be described as different 
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“levels” of the SFM, and are defined as follows:
42

  

 Consider the molecule M: 

M = G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8           (41) 

 In the Level 1 SFM, two bonds separated by just one functional group are sequentially 

broken. The initial fragments would be described as follows: 

M ! G
1
G
2
+G

2
G
3
G
4
G
5
G
6
G
7
G
8
"G

2
             (42) 

 The G2 fragment is subtracted in order to preserve the number of atoms in Molecule, 

M, and to avoid double counting. This procedure is repeated on the G2G3G4G5G6G7G8 

fragment until no term is larger than two functional groups. The total energy of molecule M 

at fragmentation level 1 can then be decomposed into the following sum: 

E
bonded

level 1(M ) = E(G1G2 ) + E(G2G3) + E(G3G4 ) + E(G4G5 ) + E(G5G6 ) + E(G6G7 ) + E G7G8( )

! E(G2 ) ! E(G3) ! E(G4 ) ! E(G5 ) ! E(G6 ) ! E(G7 )
.  

(43) 

In the level 2 SFM, bonds separated by two groups are broken. The total energy of 

molecule M at fragmentation level 2 is as follows:  

E
bonded

level 2 (M ) = E(G1G2G3) + E(G2G3G4 ) + E(G3G4G5 ) ! E(G2G3) ! E(G3G4 ) .    (44) 

 In the level 3 SFM, bonds separated by three functional groups are sequentially 

broken, giving rise to the following energy expression: 

Elevel 3

bonded
(M ) = E(G1G2G3G4 ) + E(G2G3G4G5 ) + E(G3G4G5G6 ) + E(G4G5G6G7 ) + E(G5G6G7G8 )

! E(G2G3G4 ) ! E(G3G4G5 ) ! E(G4G5G6 ) ! E(G5G6G7 )
.  

(45) 

  To describe a system analogously to the ab inito full molecular system non-

bonded interactions among separated functional groups much be considered. Within the SFM 

framework a modified many body expansion is employed,
43 

which assumes the bonded 
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interactions are much stronger than non-bonded interactions. Consider an example of a three-

body non-bonded interaction between three functional groups G
1
, G

2
 and G

3
. Any 

interaction is assumed to be negligible unless two of the groups are bonded to each other. 

ConsiderG
3
 bonded directly to G

2
 where the three-body interaction energy would be: 

E
nb

(1,2)
G
1
;G

2
,G

3[ ] = E G
1
G
2
G
3( ) ! E G

1( ) ! E G
2
G
3( )

! E
nb

1,1( )
G
1
;G

2[ ]! Enb
1,1( )

G
1
;G

3[ ] ,              (46)

         

 The total SFM energy of a system is simply the addition of the bonded and non-bonded 

energies, 

E
SFM

total
= E

bonded
+ E

non-bonded
.                             (47) 

 The SFM is limited in the types of systems that may be considered.  The SFM is unable 

to fragment conjugation in delocalized molecular systems, since breaks only occur between 

groups joined by single bonds.  Secondly, SFM is unable to fragment six member rings using 

level 3 since the capping hydrogens would approach each other too closely and would 

therefore cause unphysical repulsive interactions. Therefore, a ring repair rule is imposed in 

which the ring itself is taken to be a functional group. Such ring repair rules extend to five 

and four membered rings for SFM levels 2 and 1 respectively. Previous work
41,42 

has shown 

that level 3 with non-bonded interactions is needed to achieve high accuracy (1 kcal/mol) 

compared to fully ab initio calculations.  
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 Figure 1. This pictorial representation
53c 

shows the original Verlet method
53d

 in a), the 

leapfrog method in b), and the velocity Verlet method in c).  The position(r), velocity(v) and 

acceleration(a) are listed along the left hand side, while the time(t) and time steps (±!t) are on 

the top of each step(9x9 box) of the algorithm. The offset boxes are at a 1/2!t time step. The 

red boxes represent stored variables and the arrows illustrate the use of stored data at their 

origin to solve for the variable at their termination.  This is done via Eqs. (37)-(39) for the 

respective method, and 
 
!!r(t) = a(t) . 
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Figure 2. Electrostatic (heterolytic) fractionation of a bond in the FMO method. 
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Figure 3. Pictorial examples of level one fragmentation for ethanol and ethanal. The 

first step breaks bonds creating functional groups, with hydrogen caps. 
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Abstract. 

An ab initio study of the addition of successive water molecules to the amino acid L-

alanine in both the nonionized (N) and zwitterionic (Z) forms are presented. The main 

focus is the number of waters needed to stabilize the Z form, and how the solvent affects 

conformational preference. The solvent is modeled by ab initio electronic structure the-

ory, the EFP (effective fragment potential) model, and the isotropic dielectric PCM (po-

larizable continuum method) bulk solvation techniques. The EFP discrete solvation 

model is used with a Monte Carlo algorithm to sample the configuration space to find the 

global minimum. Bridging structures are predicted to be the lowest energy Z minima af-

ter 3-5 discrete waters are included in the calculations, depending on the level of theory. 

Second-order perturbation theory and PCM stabilize the Z structures by ~3-6 kcal/mol 

and 7 kcal/mol, respectively, relative to the N global minimum through the addition of up 

to 8 waters. Subsequently, the contributions of each are ~1 kcal/mol relative to the N 

global minimum. The presence of 32 waters appears to be close to converging the N-Z 

enthalpy difference, !HN-Z..  

 

Introduction 
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 Alanine is one of the 20 amino acids that are the naturally occurring, basic build-

ing blocks of proteins. A basic understanding of phenomena associated with alanine and 

other amino acids is essential to understanding the complexity of protein folding and pro-

tein interactions and reactivity. Modeling of alanine in solution is useful for exploring the 

flexibility of small amino acids, so both glycine and alanine have been extensively stud-

ied, both experimentally and theoretically.
1-44

 Amino acids in the gas phase are predomi-

nantly in the nonionized (N) form; however, when placed in aqueous solution the zwitte-

rionic (Z) form is generally more stable.
1-4,17,39,43

  

 The study of amino acid solvation can employ various methods, both discrete 

(explicit) and continuum (implicit). Previous studies that used continuum models treated 

the solvent as a polarizable medium. The most commonly employed continuum methods 

are based on the polarizable continuum method (PCM),
46-49

 self consistent reaction field 

(SCRF) or Onsager cavity model,
50

 solvation model 8 (SM8),
51 

COSMO,
52 

GCOSMO,
53

 

and solvation with volume polarization (SVP).
54

 Advantages of the continuum approach 

are computational efficiency, simplicity of the calculations, and prediction of bulk prop-

erties with reasonable accuracy. However, these methods are sensitive to the parameter-

ization of the size and shape of the cavity that surrounds the solute. Further, continuum 

models do not always describe important solute-solvent electronic effects well. The con-

tinuum models cannot describe systems that form hydrogen bonds between solute and 

solvent accurately, since they do not include explicit solvent-solute interactions.  

 The discrete methods account for intermolecular solute-solvent interactions. 

Common implementations include ab initio quantum mechanics (QM), which rapidly be-

comes too computationally demanding with increasing numbers of solvent molecules, 
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and hybrid quantum mechanics/molecular mechanics (QM/MM) methods. QM/MM 

methods reduce the computational demands by orders of magnitude.  

 One complication that arises when using discrete solvents is the rapidly increasing 

number of geometric degrees of freedom and the even more rapidly increasing number of 

configurations that may be important in configuration space. A molecular dynamics 

(MD) or Monte Carlo (MC) method must be used to adequately sample and accurately 

capture the full configuration space.  

A promising QM/MM method is the effective fragment potential (EFP) ap-

proach.
55-60

 The original, Hartree-Fock based, EFP1 method was designed specifically for 

water and is represented by a set of one-electron potentials that are added to the ab initio 

electronic Hamiltonian. The EFP1 method contains three energy terms: Coulomb, induc-

tion/polarization and a remainder term that includes exchange repulsion and charge trans-

fer for both solvent - solvent and solute - solvent interactions.  

 The Coulomb portion of the electrostatic interaction is obtained using Stone’s dis-

tributed multipolar analysis,
60b

 truncated at the octopole term. Atom centers and the bond 

midpoints are used as expansion points.  

 Induction (polarization)
 
is the interaction of an induced dipole on one fragment with 

the permanent dipole on another fragment, expressed in terms of the dipole polarizability.  

The efficacy of truncating the polarizability expansion at the first (dipole) term is due to 

the EFP treatment of this term in a distributed manner: The molecular polarizability is 

expressed as a tensor sum of localized molecular orbital (LMO) polarizabilities. There-

fore, the number of bonds and lone pairs in the molecule gives the number of polarizabil-

ity points. Iterating the dipole-induced dipole interaction to self-consistency captures 
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many body effects. 

Charge penetration (damping of the Coulomb term) is included in order to ac-

count for short-range quantum effects that are not accounted for by the classical multipo-

lar expansion. The first two EFP terms are determined based on QM calculations on the 

water monomer. The third term is fit to a quantum mechanical water dimer potential. 

Three EFP1 methods have been derived, based on Hartree-Fock (EFP1/HF), density 

functional theory (EFP1/DFT),
61 

which includes short range correlation effects, and sec-

ond order Møller-Plesset perturbation theory (EFP1/MP2),
62 

which includes dispersion 

effects (a fourth term)  and a second order correction to the Coulomb and polarization 

terms. EFP1/MP2 is currently only available for solvent-solvent, not solvent-solute, in-

teractions. A general effective fragment potential model (EFP2) that contains no empiri-

cally fitted parameters has also been developed.
55-57

 An EFP2 can therefore be generated 

for any molecular species.  In addition to the Coulomb plus damping and polariza-

tion/induction terms described above for EFP1, the EFP2 model
63

 includes interaction 

terms that describe exchange repulsion, dispersion,
64

 and charge transfer,
65 

each of which 

have been derived from first principles. The EFP2 method has been described in detail in 

a recent review.
63

 Both EFP1 and EFP2 have been used in the present study. 

Some three-layer approaches have been developed that combine the discrete and 

continuum approaches.
21

 These methods may reduce the number of explicit solvent 

molecules required (and thus the computational cost) and may facilitate an accurate de-

scription of long-range interactions. 

 Interactions between amino acids and water molecules are of considerable inter-

est, particularly with regard to structures and vibrational spectra.  Depending on the pH, 
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amino acids may be N, Z, anionic, or cationic.  The intermolecular hydrogen bonding in-

teraction that occurs in water leads to a considerably larger stability of the Z form com-

pared to the N form. Consequently, the experimental free energy and enthalpy for the 

process Z(aq)  ! N(aq) are 7.3 and 10.3 kcal/mol, respectively, for glycine.
66 

The corre-

sponding experimental values for alanine do not appear to be available; however, they are 

likely to be similar to the glycine values.
 
 

 Most previous studies of the Z/N equilibrium in amino acids have focused on gly-

cine,
1-27

 the simplest amino acid. The present study addresses similar questions, with re-

gard to relative energies and structures, for alanine. Alanine (Figures 1-3) is the simplest 

amino acid to exhibit chirality because of its substituent methyl group. The crystal struc-

ture of alanine exhibits the zwitterion.
67,68

 This structure is often used as a basis for the 

aqueous solvated geometry, as it is generally accepted that for small aqueous proteins, 

crystallization gives rise to just a small perturbation of the solution structure.
69-71

 This 

stems mainly from the success of subsequent experimentation based on data from crystal 

structures. It should be noted that this observation implies that the Z structure is most 

likely dominant in aqueous solution, but not necessarily the same Z conformation that is 

observed in crystalline form.  

Previous glycine studies 

 The earliest computational studies of amino acids focused on the relative energies 

of the N and Z structures of glycine in the gas phase
1,2,3 

and in solution.
4
  There are three 

internal rotational degrees of freedom for N glycine: rotation about the C-C bond, rota-

tion of the hydroxyl group about the C-O bond and rotation of the amino group about the 

C-N bond. Initial studies focused on Cs and C1 stationary points on the conformational 
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potential energy surface of gas phase N glycine.
5,6

 If one uses a basis set that includes 

polarization functions on all atoms, the Z form is not a minimum on the glycine potential 

energy surface.
7
 The lowest energy N species has a structure that is well positioned to 

accommodate an intermolecular proton transfer.
9,13 

Consequently, in the gas phase the Z 

undergoes proton transfer to yield the N structure. 

 In order to establish the Z as a local minimum on the potential energy surface, 

electrostatic stabilization in the form of aqueous solvation must be included in the com-

putation. Continuum methods combined with HF, DFT, and MP2 have predicted that the 

electrostatic solute-solvent interactions stabilize the Z form, so that the zwitterion does 

not undergo spontaneous hydrogen transfer.
8-15

 Discrete solvent studies of glycine have 

primarily focused on a small number of water molecules. The recent paper by Aikens and 

Gordon presents an extensive review of these calculations.
17

 A single water molecule will 

cause the Z isomer of glycine to become a local minimum at the RHF level of theory; 

however, when correlation is introduced, for example with MP2, this local minimum dis-

appears. It appears to be necessary to have two explicit waters present in order to main-

tain a local Z minimum at the MP2 level of theory.
18 

A continuation of the discrete 

method to a full solvent shell greatly increases the number of degrees of freedom in coor-

dinate space. Thus, the number of local minima would increase to the point at which an 

automated sampling technique, such as Monte Carlo (MC) or molecular dynamics (MD) 

simulations, must be employed to efficiently sample this space. Alternatively, a three-

layered approach has been used to reduce the number of discrete waters needed by in-

cluding a continuum that surrounds the entire atomistic system. These methods may re-

duce the computational effort. However the long range interactions may not achieve the 
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desired accuracy.
16 I,14,16H,7,16G,15,19-24

 

 Supermolecular complexes have also been studied using DFT/B3LYP
21

 and the 

composite DFT/B3LYP + Onsager
36

 model, but these authors do not discuss configura-

tional sampling.  In a separate effort, MC simulations with a molecular mechanics force 

field were employed to sample the configuration space, with the structures subsequently 

optimized with semi-empirical QM methods.
19

 This study found that the Z form is more 

stable than the N form when 7 and 15 waters are present in a self-consistent reaction 

field. Bandyopadhyay et al. considered the glycine(H2O)8 complex using three-layer 

models that combined the effective fragment potential with either the Onsager or PCM 

models.
16,21

  In the first study, eight water molecules in the solvent shell were selected 

from a previous molecular dynamics calculation, and this structure was optimized.
21

 In 

the second study, Monte Carlo simulations with local minimizations were used in order to 

find a low energy configuration.
16

 Cui used a similar approach in order to examine the 

affects of TIP3P waters.
20

 Using the three-layer approach, the Z form is predicted to be 

more stable than the N species when a reliable continuum method
21,20,16

 is used. Campo 

et al, studied the effects of increasing glycine concentration, and separately the inclusion 

of Na
+
 and Cl

-
 on the water orientation via MD.

27
  

Previous Alanine Studies 

 Previous studies of alanine have examined the gas phase structures
 
and found the 

energy difference to favor the N isomer at several levels of theory: AM1,
19,28 

RHF,
29

 

DFT/B3LYP,
29,30,28 

DFT/PWP,
29 

MP2,
29

 and coupled cluster with single and double exci-

tations (CCSD).
31

  The Z form was found to be a local minimum with B3LYP and MP2. 

Continuum studies using PCM and DFT/B3LYP predict the Z isomer to be lower in en-
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ergy than the N species.
28 

MC simulations and generalized Born (GB) studies of the Z 

conformation with 212 explicit waters predict a nearly planar NCCOO moiety,
32

 for 

which the barrier to rotation of the COO is 5.9 kcal/mol and the NH3
+
 rotation barrier is 

less than 1 kcal/mol. The experimental observations show free rotation NH3
+
 of glycine 

in spectroscopy of water-amino acid microjets.
33

  

 Discrete solvation with a small number of waters has also been explored.  The N 

(H2O) complex has been explored with DFT/B3LYP, using the 6-311++G(d,p) basis 

set.
34

 Kwon et al. found large barriers to proton transfer from N to Z, but a 0.85 kcal/mol 

barrier with MP2 for the reverse process when two waters are present. The transition state 

for this process lies near the Z isomer on the potential energy surface.
35

 Ahn et al. ex-

plored the one and two water complexes and found a concerted double proton transfer for 

the two water case with B3LYP and MP2.
36

 Park et al. determined a 5.89 kcal/mol barrier 

for a concerted triple proton transfer mechanism using MP2/6-31++G(d,p) with three wa-

ter molecules present to connect the local minima of the Z and N isomers.
37

 Xu et al. 

showed that alanine in the presence of 7-9 waters has high electron binding energy spec-

tral trails, which implies that the Z species has been formed by the addition of 7 waters.
38 

Chuchev et al. used DFT/B3LYP and MD to systematically study the preference for Z 

versus N for 1-10 waters, and proposed that the conversion to the Z form occurs in the 

range of 6-8  waters.
39

  

 Ellzy computed structures of alanine with four waters and compared them to vi-

brational circular dichroism data.
40 

Ellzy’s lowest energy structure is not the global 

minimum found by Chuchev. However, agreement with vibrational circular dichroism 

does imply that there is a population of an approximately energetically degenerate state 
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near the minimum. This suggests that Boltzmann averaging may be useful in interpreting 

computational data.
40

  

 Use of continuum models in a three-layer approach employing the Onsager reac-

tion field and DFT/B3LYP waters
41,42

 concluded that 9 waters was not a complete solvent 

shell. Explicit hydration around the methyl group was not observed when the continuum 

was employed, and the explicit water model did not reproduce the experimental vibra-

tional absorption spectrum. A large number of discrete TIP3P waters has also been used 

with MD to examine alanine. This study concluded that a large number of water mole-

cules is needed to make solvation of the methyl group energetically favorable.
43

 These 

simulations contained 300 rigid water molecules and exhibited a smaller probability of 

water density near the methyl group. Dixit et al. examined the free energies of hydration 

of amino acids. They predicted that the pKa of glycine and alanine are similar to each 

other, based on a simple electrostatic model used to calculate the pKa shifts. This suggest 

that the !Hvap of alanine may be similar to that of glycine (!H=10.2 kcal/mol).
44

 

 The present work examines the crossover from the N to the Z form of alanine as 

the number of water molecules is increased. MC with simulated annealing was employed 

to find local minima and to attempt to determine the global minimum. Quantitatively, it is 

of interest to determine how many water molecules are necessary to converge the Z-N 

alanine energy difference in aqueous solution. Both discrete and continuum solvent mod-

els have been used to elucidate the effectiveness of both approaches. 

Computational methods 

 The two major forms of alanine explored here are the N (Figures 1 and 2) and Z 

(Figure 3) isomers. Starting structures for alanine were obtained from the crystal struc-
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ture,
67,68

 with additional structures exploring torsions about the COO
-
, COOH and NH3

+
, 

NH2 (Z,N) units, as well as the chirality about the alpha carbon. Other starting N struc-

tures allowed for rotation of the OH bond away from or toward the NH2 or CH3 group, 

depending on the torsion of the COOH group. The initial gas phase results for both chiral 

forms of N alanine (L, D) were obtained with restricted Hartree-Fock
72

 (RHF) and 

Møller-Plesset second order perturbation theory
73 

(MP2) using the 6-31++G(d,p) basis 

set.
74-76

 In order for the Z structures to be stable with no discrete water molecules present, 

a continuum solvent model, such as PCM, must be used. The PCM uses van der Wall ra-

dii for cavity generation. The values used in these calculations may be found in the 

GAMESS manual. Therefore, the Z structures were found using RHF in PCM 

(RHF+PCM), employing the 6-31++G(d,p) basis set. The N structures were also re-

optimized using RHF+PCM/6-31++G(d,p). A MP2+PCM single point was run at the 

RHF+PCM structure for both the N and Z forms. 

 Once the gas phase (plus PCM for Z) structures were determined, a discrete ap-

proach was employed to examine the effect of systematically adding waters. First, 

alanine(H2O)n, n = 1-3, clusters were optimized at the RHF and
 
MP2 levels of theory with 

the 6-31++G(d,p) basis set. The 1-3 waters were added manually in chemically sensible 

orientations. Each water molecule was modeled by both ab initio QM and EFP1/HF when 

using HF for alanine, and by EFP1/DFT water when using MP2 to describe alanine.  Op-

timizations with both water and alanine treated as MP2 allowed the testing of possible 

hydrogen transfer. 

  For larger numbers of waters, manually choosing their placement is not efficient 

or effective, so the Monte Carlo
77,78

 method with simulated annealing (SA) was used to 
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sample configuration space. The MC simulations were carried out using EFP2 for both 

the solute and the solvent. The molecular structures used to create the EFP2s were taken 

from RHF+PCM calculations. All eight forms of L-alanine were explored along with 

ALA 1D and ALA 2D. For the Z form, the L enantiomer was considered, as well as three 

Z rotamers (45˚ and 90˚ rotation of the COO
- 
group about the C-C bond, 60˚ rotation of 

NH3
+
 about the N-C bond). The MC/SA method with local minimization was used to 

sample the configuration space. For each global minimum found, the number of struc-

tures sampled was on the order of 400,000 – 1,000,000. A local minimization was per-

formed every 10 or 100 steps, and the number of steps taken for each temperature was 

varied (e.g., 100, 500, 1000, 10,000). The number of fragments moved per step was also 

varied in the calculations.  With six or more discrete solvent molecules present, one to 

five fragments were moved during each successive step. The starting temperature for the 

simulated annealing runs varied from 300 to 20,000 K and the final temperature was kept 

at 200 K. The MC/SA code was also used to verify the minima found for one to three wa-

ters. Both approaches found the same structures (except when MP2 predicted proton 

transfer) through three solvent molecules, at which point the MC technique was deemed 

effective and used exclusively. 

 The twenty lowest unique minima were selected for further investigation for each 

rotamer of alanine explored with n waters. Optimizations and Hessians (matrices of en-

ergy second derivatives) were calculated at the EFP2 level of theory. Further, these struc-

tures were evaluated by MP2 optimizations and Hessians to assess the accuracy of EFP2. 

Single point calculations were performed using QM alanine with water represented by 

(EFP1/HF) or (EFP1/DFT). EFP1 employs a set of potentials that are added to the one-
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electron part of the QM electronic Hamiltonian. 

 The notation employed to indicate the type of methods used for the single point 

energies is alanine(water)//geometry. For example, HF(EFP1/HF)//EFP2 represents a 

single point energy calculation with the alanine treated as RHF and the water as EFP1/HF 

calculated using an EFP2 geometry. Single point energies were calculated using 

HF(EFP1/HF)//EFP2, DFT(EFP1/DFT)//EFP2 using the B3LYP functional,
79

 

MP2(EFP1/DFT)//EFP2, and MP2(MP2)//EFP2. Optimizations starting at the EFP2 

geometries used MP2(EFP1/DFT), where alanine is MP2 and the water is (EFP1/DFT). 

Another set of single points were run using MP2(MP2)//MP2(EFP1/DFT), where the 

both the alanine and the water were treated as MP2. Single points including C-

PCM+MP2 were run at the EFP2 and MP2(EFP1/DFT) optimized geometries. All calcu-

lations were performed with the electronic structure code GAMESS,
80

 which is freely 

available from Iowa State University at http://www.msg.chem.iastate.edu/. Structures 

were visualized with MacMolPlot,
81

 a graphical interface to GAMESS that is available at 

the same web site. 

Results 

Alanine  

 The sixteen N alanine conformations found are shown in Figure 1(L chirality) and 

Figure 2 (D chirality). All L structures along with ALA 1 D and ALA 2 D, (see Figures 1, 

2) were used in the MC simulations. The EFP2 Z form and the conformational rotamers 

(45˚, 90˚ rotation of the COO
- 

group about the C-C bond, 60˚ rotation of NH3
+
 group 

about the N-C bond) used in the MC/SA simulations are in Figure 3. 

 L-Alanine is the biologically active form of the molecule, so it is the primary fo-
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cus of the present study. No significant difference in energy due to chirality was found, as 

can be seen in Table 1. The origin of the HF and MP2 relative energy differences for the 

ALA8 L and ALA8 D isomers (Table 1) stems from a small difference in the methyl ori-

entation relative to the N-C-C-O plane. While most of the data reported relates to L-

alanine the N species of D-alanine with 3-8 waters was also studied. Table 2 shows that 

with PCM+MP2 the L vs. D energy differences are within ~1 kcal/mol. These differences 

may be the result of incomplete sampling of the D-alanine configuration space, because 

only two D-alanine conformers were used, and the number of energy evaluations was not 

as large.  

Continuum Calculations 

The HF+PCM continuum method predicts that the Z form is lower in energy than 

the N species; however, this difference is only 0.8 kcal/mol.  While the HF energy differ-

ence is qualitatively correct, the importance of including electron correlation has been 

demonstrated in previous studies.
(5,9)

 A MP2+PCM single point calculation predicts the Z 

form to be 1.8 kcal/mol lower in energy. Thus, MP2 provides an additional 1 kcal/mol 

stabilization of the Z form relative to the N form. MP2 may alter the energy gradient, and 

consequently, the geometry, as well. Furthermore, the strengths of the hydrogen bonds 

formed between the solvent molecules and the N and Z isomers differ, and the continuum 

solvent may not fully capture this differential effect. A combined discrete+continuum ap-

proach might result in a faster convergence of the Z-N energy difference.  

In the following subsections the impact of an increasing number of waters on the 

N-Z equilibrium and the detailed structures is examined. These structures are presented in 
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Figures 4-12. The ordering of the structures in these figures is determined by the relative 

energies of the MP2+PCM calculations, since MP2+PCM is considered to be the highest 

level of theory in this work. 

Alanine(H2O)1  -  2  Figures 4, 5  

Water may interact with a given alanine conformer at the carboxyl group, the 

amine group, or the saturated carbon. With one and two waters, in the majority of the low 

energy N (N1-1, N2-1) structures, the water molecules interact predominately with the 

carboxyl group which has been seen previously.
82

 The lowest energy Z form, Z1-1, has a 

water bridge between the COO
-
 and NH3

+
 groups, even in the one water case, as shown in 

Figure 4.  

 At the HF level of theory, for both one and two water molecules, the Z form cor-

responds to a local minimum on the alanine-(H2O)n potential energy surface; however, 

when electron correlation is added via MP2, the Z structures collapse via a proton trans-

fer from the NH3
+
 to the COO

- 
 group to form the N structure. MP2 optimizations of the 

N form do not significantly change the ordering of the sampled structures. There is some 

relaxation of the alanine structure from a frozen EFP2 geometry when the geometry is 

allowed to optimize with MP2(EFP1/DFT). However, on average, this does not create a 

significant change in the energy relative to the global minimum (~0.3 kcal/mol for the N 

conformer). N1-1 (Figure 4) is predicted to be the global minimum by 2.1 kcal/mol with 

one water and N2-1 (Figure 5) by 1.8 kcal/mol for two waters.  

MP2 stabilizes the Z form relative to the N form, and MP2(EFP1/DFT) re-

optimization further stabilizes the Z form. However, with 1-2 waters the Z form is pre-

dicted to be 8-10 kcal/mol higher in energy unless a continuum is also included. Note that 
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for both one and two waters, the Z form would collapse to the N form if the entire struc-

ture were fully optimized using MP2 without a continuum. 

Alanine(H2O)3   Figure 6 

  For the N form, water binds in three distinct ways: separated, chain and carboxyl 

cluster. The separated arrangement in N3-1 has two waters bound to the carboxyl group 

that form a cyclic structure, while the third water binds to the amine group and does not 

form hydrogen bonds to the other two waters. The arrangement in N3-2 is a chain of hy-

drogen bonded waters connecting the carboxyl and amine groups. The carboxyl cluster 

arrangement is illustrated by N3-3 and N3-4. These carboxyl clusters, which resemble 

small water clusters, are energetically favorable except when including a continuum sol-

vent.  

At the MP2 level of theory (for both alanine and water), the lowest energy Z iso-

mer is now stable and does not undergo spontaneous proton transfer. Since the Z isomer 

is a local minimum on the potential energy surface when three waters are present, the ge-

ometry obtained with the EFP2 model potential (which cannot treat proton transfers) 

should be qualitatively correct. In the lowest energy Z form, Z3-1, two of the waters in-

teract directly with the carboxyl group, while the third water hydrogen bonds to the first 

two waters and the amino group. This third water is partially obscured by an oxygen in 

the lower right corner of Z3-1. The Z3-1 isomer is the global minimum only when both 

PCM and MP2 are included in the calculation. The higher energy Z species Z3-2 is lower 

in energy until both PCM and MP2 are included. 

Alanine(H2O)4   Figure 7 

 For four or more waters, the global minimum structure is determined exclusively 
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using MC simulations, because of the large number of configurations that are required to 

properly sample the configuration space. For four waters, all methods that do not include 

PCM predict the lowest energy structure to be the neutral species N4-4. This isomer re-

sembles the water hexamer “prism” structure, in which the two oxygen atoms in the 

COOH group act as two of the six centers. When PCM and MP2 are both included in the 

calculation, N4-1, similar in structure to the water hexamer “bag” structure, is found to be 

the lowest energy N structure, and the global minimum is now Z4-1. At the RHF/6-

31++G(d,p) level of theory, Z4-1 is predicted to be 13.5 kcal/mol higher in energy than 

N4-4. The inclusion of dynamic electron correlation via MP2 at the same EFP2 geometry 

changes the energy difference to 8.7 kcal/mol. PCM+MP2//MP2(H2ODFT) single point 

energy calculations predict that Z4-1 is 1.8 kcal/mol lower in energy than N4-1 and 10.5 

kcal/mol lower in energy than N4-4. 

Alanine(H2O)5   Figure 8 

 In the majority of the N isomers with five water molecules present, one water 

molecule interacts with N alanine near the amine, while most of the waters interact via 

carboxyl clustering. N5-3 is an example of a structure in which the water interacts exclu-

sively with the carboxyl group. As the level of theory is improved, there are noticeable 

changes in the energy ordering of the lowest energy isomers. This is especially true when 

both PCM and MP2 are included in the calculation with the MP2(EFP1/DFT) geometry. 

At this highest level of theory, Z5-1 is the global minimum, and Z5-2 (3.9 kcal/mol 

higher in energy than Z5-1) is also lower in energy than any N isomer. In these two Z 

isomers, the water molecules interact strongly with both alanine charge centers, NH3
+ 

and 

COO
-
. This leads to the formation of water bridges that connect the two charge centers, 
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as noticed previously for glycine.
17

 The lowest energy neutral species, N5-1, has a chain 

of waters that connects the amino group with the carboxyl group, whereas the five waters 

cluster around the carboxyl group in N5-4. For five waters, all methods that include only 

discrete solvent molecules (no PCM) still predict the N form to be the global minimum.  

Alanine(H2O)6    Figure 9 

 The pattern that emerged for four and five water molecules continues for six wa-

ters. In calculations that do not include PCM, the lowest energy species is still a N iso-

mer, although the energy difference between the lowest energy N and Z isomers de-

creases as the number of waters increases. For example, at the MP2 (EFP1/DFT) -

31++G(d,p) level of theory, N6-4 is only 0.9 kcal/mol lower in energy than Z6-2. As 

noted above, when both MP2 and PCM are included in the calculation, there is a dramatic 

re-ordering of relative energies, with the global minimum now being Z6-1, followed in 

energy by Z6-2 < N6-1 < N6-2. The two lowest energy Z isomers, Z6-1 and Z6-2, exhibit 

bridging chains that connect the two charge centers. The addition of PCM greatly stabi-

lizes Z6-1 relative to Z6-2, while MP2 has only a small effect.   

Alanine(H2O)7   Figure 10 

 Some dramatic changes emerge for n = 7. At this point, all levels of theory except 

HF predict that the lowest energy structure is a zwitterion, even without the continuum 

present. PCM does stabilize Z7-1 relative to Z7-2 by about 5 kcal/mol, but Z7-1 is still 

the global minimum before the addition of PCM to the calculation. Interestingly, once 

electron correlation has been incorporated via MP2, the subsequent addition of PCM 

lowers the energy of the four N species shown in Figure 10 relative to Z7-1. This global 

minimum exhibits a chain of water molecules that connects the COO
-
 group with the 
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NH3
+
 group. In the lowest energy N isomer, N7-1, the seven water molecules are mostly 

clustered around the carboxyl group. The higher energy (by 4.4 kcal/mol) N7-3 species 

exhibits a greater propensity for waters to move near the amino group.   

Alanine(H2O)8  Figure 11  

   The two lowest energy eight-water zwitterions are Z8-1 and Z8-2, with the for-

mer being lower in energy than the latter by 2.4 kcal/mol. These are the two lowest en-

ergy structures of the six (including four N isomers) shown in Figure 11. In the four N 

structures the carboxyl clustering motif dominates with some small water density near the 

amino group. 

 There is a trend thus far for the N structures to resemble small water clusters in 

which the carboxyl group tends to play the role of two waters in an extended water clus-

ter. The lowest energy N minima consequently appear to be very similar to the global 

minima of small water clusters. This tendency is more apparent when the PCM contribu-

tion is omitted, in which case the preferred structures have the explicit water molecules 

saturating the hydrogen bonding amine and carboxyl groups. For 5-8 water molecules, 

the waters tend to form clusters among themselves, most likely due to stronger water-

water hydrogen bonds. In the Z isomers, the presence of local charges strengthens the wa-

ter-alanine interactions, and the waters form bridges or chains that connect the positive 

and negative charge centers. Up to eight water molecules, the waters have largely 

avoided the methyl group. 

 In the following paragraphs, the numbers of water molecules included in the cal-

culation are increased in units of eight waters, in an attempt to approach “complete” sol-

vation of alanine. 
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Alanine(H2O)16   Figure 12 

 When 16 waters are present, Z16-1 is predicted to be the global minimum at all 

levels of theory, and all four N isomers shown in Figure 12 are higher in energy than the 

two lowest energy Z isomers. In the lowest energy Z structures, the water molecules are 

well distributed along the COO
—

NH3
+
 corridor, but they mostly avoid the hydrocarbon 

moiety. In the N structures, carboxyl clustering again dominates in all structures shown in 

Figure 12, suggesting that, as noted above, the water-water hydrogen bonding interaction 

is dominant. The Z form clearly causes more reorganization of the water than the N form 

when compared to pure water clusters. For the sixteen water case, it appears that the 

MP2(EFP1/DFT) optimization has a large effect, as seen in the relative energies of Z16-1 

and N16-1 – 3.8 kcal/mol at EFP2 geometries using MP2(EFP1/DFT) single point ener-

gies. When the geometries are re-optimized with MP2(EFP1/DFT)/6-31++G(d,p), this 

relative energy increases to 15.6 kcal/mol. Single point calculations at the 

MP2(EFP1/DFT)/ 6-31++G(d,p) geometry, including PCM, lowers the energy of N rela-

tive to Z to 5.2 kcal/mol. These large relative energy changes occur for all of the struc-

tures shown in Figure 12.  However, the two Z isomers are the lowest-energy 16-water 

species and N16-1 is the lowest energy N isomer at all levels of theory. 

 

Alanine(H2O)24  Figure 13  

 For most of the 24-water Z isomers, the water molecules form a concave shape in 

which the alanine is embedded, although not fully solvated. The N isomers have the ap-

pearance of a water droplet, in which the alanine is integrated into the surface of the clus-

ter, with both the amine and carboxyl groups participating in hydrogen bonds with the 
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water cluster. The water clusters in the N isomers contain many identifiable 5- and 6-

member ring structures, suggesting that the water molecules are still preferentially hydro-

gen bonding with each other. All levels of theory predict Z24-1 to be the global mini-

mum. The energy separation between Z24-1 and N24-1 is 4.8, 0.4, and 0.9 kcal/mol at 

the MP2//EFP2, MP2(EFP1/DFT) optimized, and PCM+MP2/(EFP1/DFT wa-

ter)//MP2/(EFP1/DFT water) 6-31++G(d,p) levels of theory, respectively.  This small 

separation may suggest that the true Z minimum has not been found for n = 24. The pref-

erential stabilization of N24-1 relative to Z24-1 by MP2(EFP1/DFT) optimization occurs 

because MP2 causes tighter and stronger water-water binding. This is more important in 

the N structures than in the Z structures, given the strong ion-water interactions in the lat-

ter. 

Alanine(H2O)32  Figure 14 

 The lowest energy 32-water N isomer, N32-1, does not appear to be fully sol-

vated. However, with 32 waters in the system, it is possible to find structures, such as 

N32-4, that appear to be fully solvated; that is, completely surrounded by water mole-

cules. At the highest level of theory, N32-4 is ~15 kcal/mol above N32-1, so the fully 

solvated species is clearly not the lowest energy N isomer. This may be due to the resis-

tance of the hydrocarbon moiety to aqueous solvation. The two lowest energy Z isomers, 

Z32-1 and Z32-2 are separated by only 2 kcal/mol, and both are more fully solvated than 

the N species. The two lowest energy N isomers are 9.1 and 9.6 kcal/mol, respectively, 

higher in energy than Z32-1 at the highest level of theory. Boltzmann averaging of the 

alanine isomers at MP2(EFP1/DFT) and adding PCM yields a N-Z energy difference of 

13.3 and 11.5 kcal/mol respectively. The experimental !HN
!

Z of glycine is 10.3 
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kcal/mol.
66

 The !HN
!

Z of alanine is expected to be similar to this value. This suggests 

that the solvation of alanine is not converged at 32 waters and that addition of more wa-

ters is needed to converge the alanine !HN
!

Z for solvated N and Z forms. 

Discussion 

This study addresses the determination of the global minima for alanine as a func-

tion of the number of water molecules that are present in the system. The justification for 

using the EFP2 method to predict geometries is based upon favorable comparisons with 

MP2 calculations on alanine with 1- 3 waters. EFP2 reproduces the MP2 structures, as 

well as the relative energies of N isomers (and separately, Z isomers) among themselves. 

Given the semi-classical nature of the EFP method, one cannot expect this method to 

provide accurate N vs. Z relative energies. The agreement between EFP2 and MP2 op-

timizations generally continues for larger numbers of waters. However, there are cases 

for which the energy ordering changes upon MP2 optimization, because MP2 binds the 

waters more strongly to each other and to alanine. However, the identification of the Z 

and N minima is consistent with both EFP2 and MP2 optimizations, so employing the 

EFP2 method to determine preliminary geometries for low-lying structures is a good 

strategy. 

 Geometry optimization within a continuum solvent model has a negligible effect 

on the N alanine structure whereas there are significant effects on the Z structure, as has 

been reported previously.
17

 Proper determination of Z structures in solution requires op-

timization in the presence of the solvent. This geometry effect decreases as the number of 

explicit waters increases. For example, with 32 waters present, the deviations from EFP2 

structures are almost exclusively due to the changes in the water orientations. Optimiza-
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tion via MP2(EFP1/DFT) with single point calculations using PCM at these geometries 

simulates the effect of adding a bulk solvent around the alanine(H2O) complex.  

 Table 3 presents the results of a series of MP2 calculations that illustrate the im-

portance of including dynamic correlation on the relative energies. The change between 

columns one and two derives from the treatment of the water as MP2. While this does 

change the Z-N relative energy, the qualitative trend is the same for both sets of calcula-

tions. In column three, the internal geometry of the alanine is allowed to relax in the op-

timization (recall that EFP internal structures are frozen). This relaxation does not alter 

the prediction of N or Z as the global minimum, but the Z-N relative energy no longer 

changes monotonically as the number of waters increases. In column four, the entire sys-

tem is treated with MP2 at the MP2(EFP1/DFT) geometries. The relative energies are 

very similar to those in column two, and predicts a monotonic increase in the relative sta-

bility of Z vs. N as the number of water molecules increases. This suggests once again the 

importance of electron correlation in predicting the relative energies of these species. 

 Table 4 illustrates the changes in the energies relative to the global minimum as 

the level of theory is improved, for n = 1-32 water molecules. The HF//EFP2 level of 

theory is improved upon in several ways: by adding electron correlation, by re-optimizing 

the geometry with the alanine treated by MP2, and by adding the continuum solvent. 

HF//EFP2 predicts that the Z form remains higher in energy than the N form until 16 wa-

ters are present. The addition of electron correlation, with the alanine treated as DFT or 

MP2, predicts that seven waters are required for the Z form to become the global mini-

mum. In all three of these cases, the addition of more water molecules systematically 

lowers the energy of the lowest-lying Z isomer relative to that of the lowest-lying N iso-
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mer. The behavior of this N-Z relative energy is not as monotonic when the structures are 

re-optimized with MP2 (EFP1/DFT); however, the overall trend (increasing relative sta-

bility of Z as the number of water molecules increases) is retained. Addition of PCM (last 

two columns in Table 4) greatly increases the relative stability of Z alanine at smaller 

numbers (2-3) of waters.    

 Table 5 shows the change in the N-Z relative energy averaged over the energy 

difference between each N structure relative to each Z structure, due to the addition of 

correlation corrections and the continuum solvent, for the structures determined by EFP2 

optimizations. For 1-8 waters, Aikens
17 

found that electron correlation provided by MP2 

stabilizes Z relative to N by 7-9 kcal/mol. As shown in Table 5, using EFP2 structures, 

the MP2 contribution to the N-Z energy difference decreases steadily with additional wa-

ters, from 6.8 kcal/mol for one water to 2.5 kcal/mol for eight waters to 0.9 kcal/mol for 

32 waters. The second column in Table 5 illustrates that the large effect of the continuum 

on the N-Z energy difference diminishes to essentially zero by the time 32 explicit water 

molecules are present. 

Binding energies  

 Boltzmann averaged energies were calculated for each water cluster using the 

Boltzmann equation:  

X
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where Xi is the calculated property (e.g., the energy) of the ith structure, corrected with  

the zero point vibrational energy. !Ei is calculated by taking the difference between the 

energy of the ith structure and the energy of the lowest energy structure for a given n; T = 
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273 K.   Xn is the Boltzmann averaged value of X for all structures for a given number (n) 

of waters.  The total binding energies (shown in Table 6) may then be calculated:  

 Be(n)= E[ALA(H2O)n]- n*E(H2O)  - E[ALA] 

where ALA = Alanine and n = 0-32. 

The differential binding energy is defined as the energy difference for the following 

process: 

 !De = Be(n) - Be(n-1)             

where n = 0-8.  The differential binding energies (Table 7) were calculated by taking the 

Boltzmann averaged energy for n waters and subtracting this from the sum of the Boltz-

mann averaged energy for n-1 waters plus the energy of one water molecule. The change 

in binding energies is of interest to study the convergence of the solvation shell. 

 The Boltzmann averaged differential binding energies, the energy associated with 

systematically adding one water, were obtained using the EFP2 Hessians for all levels of 

theory. A validation of this approach was carried out for the lowest energy conformers (N 

and Z) for 3-5 waters, by performing MP2 optimizations and Hessian calculations for the 

entire alanine + water system.  On average, the relative energies obtained after adding the 

EFP2 zero point energy (ZPE) correction to the EFP2 relative energies are in agreement 

with the corresponding MP2 values to within ~1 kcal/mol. 

 Total binding energies are shown in Table 6. The addition of correlation energy 

generally increases the total binding energies. Both DFT and MP2 are in very good 

agreement with each other.  

The differential binding energies shown in Table 7 fluctuate as the number of wa-

ter molecules is increased. The N differential binding energy has large fluctuations until 
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the addition of five waters. Subsequently, the fluctuations are small, ~1 kcal/mol.  The 

fluctuations for the Z isomer do not significantly decrease by eight waters. This fluctua-

tion in differential binding energies has also been observed, both experimentally and 

computationally, for the systematic addition of water molecules to small anions.
66

 The 

DFT and MP2 differential binding energies are in good agreement with each other. 

Conclusions and Summary 

 The generalized effective fragment potential (EFP2) captures reasonably well the 

geometries of the fully ab initio alanine-water complexes, so the EFP2 method provides 

an efficient method for obtaining these structures, especially as the number of water 

molecules is increased. The EFP2 Z vs. Z and N vs. N relative energies agree well with 

those obtained with MP2(EFP1/DFT)//EFP. The relative energies of Z isomers vs. N 

isomers are difficult for this method to capture, given the substantially different electron 

distributions of these two species. 

 Electron correlation is essential in order to correctly predict the relative energies 

of the lowest-energy N and Z isomers. Both DFT/B3LYP and MP2 provide substantial 

stabilization of Z alanine, especially for small numbers of explicit water molecules. Upon 

the addition of correlation corrections, the Z form becomes lower in energy at seven wa-

ter molecules, for both DFT/B3LYP and MP2 single points at EFP2 geometries. When 

the continuum solvent is included in the calculations, the Z species become lower in en-

ergy with the addition of just 2-3 water molecules. As the number of discrete water mole-

cules increases, the importance of the continuum solvent on the energy difference be-

tween the N and Z forms decreases to nearly zero. With 16 or more waters present, a 

large portion of the long range interactions with the bulk solvent are therefore being re-
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covered. 

 The large number of low energy structures illustrates the importance of configura-

tional sampling. So, many N and Z structures must be taken into account via statistical 

averaging if one is to calculate properties of even small clusters.  

 It is useful to compare the main findings presented here with those of previous 

researchers. Chuchev and BelBruno found (for clusters with 10 waters) a 6.6 and 5.2 

kcal/mol heat of formation for the N ! Z transition (!HN
!

Z) using DFT/B3LYP and 

MP2 single point energies, respectively, at the DFT geometries.
39

 Kwon, Kim and No
27

 

found !HN
!

Z  of 25.0 and 25.6 kcal/mol for one and two waters, respectively, at the HF 

level of theory.  Rzepa and Yi
14

 found !HN
!

Z to be 9.1and 5.6 kcal/mol for 7 and 15 wa-

ters, respectively, with PM3
83

 calculations, and 14.8 and 1.0 kcal/mol for 7 and 15 wa-

ters, respectively, with the AM1 method.
84

 These authors used a SCRF continuum model 

with the PM3 and AM1 semi-empirical methods to obtain !HN
!

Z = 7.4 and 2.9 kcal/mol, 

respectively. The global minimum MP2 [Boltzmann averaged MP2] !HN
!

Z predicted in 

this work for 32 waters (see Table 4) is 11.7 [12.6] kcal/mol, 10.1 [13.3] kcal/mol or 9.1 

[11.5] kcal/mol using MP2(EFP1/DFT)//EFP2, MP2(EFP1/DFT) or 

PCM+MP2//MP2(EFP1/DFT), respectively. The experimental value of !HN
!

Z for gly-

cine is 10.3 kcal/mol.
66

 One would expect a similar value for alanine.  

 The first solvation shell first appears to begin forming in the Z form somewhere 

between 24 and 32 waters. When starting MC with a fully surrounded structure for 24 

waters, the MC always found the waters clustered on the COOH/COO
-
 and NH2/NH3

+
 

moieties of the N and Z alanine.  With 32 waters, there are N structures found by MC that 

exhibit a solvated structure, including solvation of the methyl group laying 20-30 
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kcal/mol above the N minimum. Therefore the !HN
!

Z energies presented may not quanti-

tatively capture the Z(aq)  ! N(aq) process, since the lowest energy N structures are only 

partially solvated. 

 The goal of finding a converged N-Z energy difference is not complete. The N to 

Z energy difference appears to be still increasing with additional waters. However, the 

!HN
!

Z for 32 waters is within a few kcal/mol of the glycine experimental value for 

methods including electron correlation. It is possible that convergence of the energy dif-

ference will coincide with the emergence of a fully solvated N species as the N minimum. 

Furthermore, MD calculations on alanine would allow for the prediction of the properties 

(dipole moment, diffusion coefficient, density, heat of vaporization) seen in solvated spe-

cies, which may be of interest to those developing models for amino acids. 
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Figure Captions 

Figure 1. L form neutral alanine conformer structures and energies (relative to ALA 1 L) 

at RHF/6-31++G(d,p), MP2/6-31++G(d,p), PCM+RHF/6-31++G(d,p), PCM+RHF/6-

31++G(d,p) levels of theory. 

Figure 2. D form neutral alanine conformer structures and energies (relative to ALA 1 D) 

at RHF/6-31++G(d,p), MP2/6-31++G(d,p), PCM+RHF/6-31++G(d,p), PCM+MP2/6-

31++G(d,p) levels of theory. 

Figure 3. Alanine zwitterion and the three rotamers (45˚, 90˚ rotation of the COO
- 
group 

about the C-C bond, 60˚ rotation of NH3
+
 group about the N-C bond) used in Monte Carlo 

simulations. 

Figure 4. Alanine and one water. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the N form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 5. Alanine and two waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the N form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 6. Alanine and three waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 



www.manaraa.com

 69 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 7. Alanine and four waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

 

Figure 8. Alanine and five waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 9. Alanine and six waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 10. Alanine and seven waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 11. Alanine and eight waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 12. Alanine and 16 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 13. Alanine and 24 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 14. Alanine and 32 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Table 1. Isomers of L and D neutral alanine, and the zwitterionic conformer. Effects of 

correlation and continuum solvation are added via MP2 and PCM respectively. The zwit-

terions are only stable when using PCM so no results are reported for HF or MP2. ZW’ 

(90˙ COO
-
), ZW’’ (45˙ COO

-
), ZW’’’ (60˙ NH3

+
) are rotamers and the values are from a 

single point and not optimized. Energies are in kcal/mol. 

 HF* MP2* RHF+PCM* MP2+PCM* 

ALA 1 L 0.0 0.0 0.0 0.0 

ALA 1 D 0.0 0.0 0.0 0.0 

ALA 2 L -2.8 -0.7 0.4 -0.7 

ALA 2 D -2.8 -0.7 0.4 -0.7 

ALA 3 L -1.2 0.6 1.3 0.4 

ALA 3 D -1.2 0.6 1.3 0.4 

ALA 4 L -1.5 0.3 1.3 2.4 

ALA 4 D -1.5 0.3 1.3 2.4 

ALA 5 L -0.5 0.3 1.9 2.3 

ALA 5 D -0.5 0.3 1.8 2.3 

ALA 6 L 4.2 5.6 3.2 4.1 

ALA 6 D 4.2 5.6 3.1 4.1 

ALA 7 L 5.4 6.4 3.8 4.5 
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ALA 7 D 5.4 6.4 3.7 4.1 

ALA 8 L 5.8 6.8 4.1 4.9 

ALA 8 D 6.0 7.0 4.4 5.1 

     

ZW   0.0 .0.0 

ZW'   5.2 4.6 

ZW''   5.4 5.1 

ZW'''   2.0 2.6 

*6-31++G(d,p) 
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Table 2.  Global minimum for D alanine subtracted from the L alanine global minimum. 

Energies are in kcal/mol. 

   

(H20)n EFP2* MP2(EFP
1/DFT)// 

EFP2* 

MP2// 

EFP2* 

MP2// 

MP2(EFP

1/DFT)* 

3 2.9 -0.8 0.5 -0.1 

4 0.0 0.9 1.8 0.8 

5 0.3 2.2 3.0 1.0 

6 5.2 3.1 2.1 1.3 

7 0.9 0.4 -0.1 1.2 

8 0.5 -0.8 0.9 1.6 

16 1.7 1.3   

24 1.7 2.1   

32 0.1 1.6   

*6-31++G(d,p) 
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Table 3. Impact of electron correlation on the energies (kcal/mol) relative to the global 

minimum for n=1 - 8. In the first column alanine is MP2 and water is EFP1/DFT at the 

EFP2 geometry. The second column uses the EFP2 geometry but with both the water and 

alanine calculated via MP2. The third column represents an optimization in which the 

alanine is treated as MP2 and the water as EFP1/DFT. The fourth column is a single point 

at the MP2(EFP1/DFT) optimized geometries but with both the water and alanine calcu-

lated via MP2. All energies are relative to the global minimum for each water n=1 - 8 at 

the respective level of theory. 

 
MP2(EFP1/DFT) 

//EFP2* 
MP2//EFP2* MP2(EFP1/DFT)* MP2

† 

(H20)n Z-N Z-N Z-N Z-N 

1 

2 

3 

4 

5 

6 

7 

8 

20.1 

13.7 

9.8 

5.7 

1.5 

0.5 

-0.2 

-0.8 

15.2 

10.9 

8.6 

4.6 

3.2 

1.7 

-2.3 

-5.4 

3.6 

8.8 

7.0 

1.5 

1.0 

1.3 

-2.0 

-2.1 

13.3 

9.9 

5.0 

4.9 

3.2 

0.0 

-3.9 

-4.2 

* 6-31++G(d,p) ZPE Corrected 

†
 //MP2(EFP1/DFT)/6-31++G(d,p) ZPE Corrected 
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Table 4. Improvements to the HF energies (kcal/mol) relative to the global minimum for 

n=1-32. The first three columns are single point energies at the EFP2 optimized geo-

metries. In the first column alanine is HF and water is EFP1/HF. In the second (third) 

columns alanine is DFT (MP2), and water is EFP1/DFT.  The fourth column presents op-

timized geometries with MP2/6-31++G(d,p) alanine and EFP1/DFT water.  Columns five 

and six use the MP2(EFP1/DFT) geometries and add the continuum solvent model 

(PCM). In both columns water is EFP1/DFT. 

 

 
HF(EFP1/HF) 

//EFP2* 

DFT/B3LYP 

(EFP1/DFT)// 

EFP2* 

MP2(EFP1/DFT) 

//EFP2* 

MP2(EFP1/DFT)* HF+PCM
† MP2+PCM

† 

(H20)n Z-N Z-N Z-N Z-N Z-N Z-N 

1 

2 

3 

4 

5 

6 

7 

8 

16 

24 

32 

22.4 

19.2 

14.7 

11.9 

10.2 

8.5 

5.5 

1.2 

-2.4 

-4.7 

-9.5 

20.8 

14.5 

6.3 

5.1 

2.0 

1.7 

-1.0 

-1.1 

-2.0 

-4.7 

-10.2 

20.1 

13.7 

9.8 

5.7 

1.5 

0.5 

-0.2 

-0.8 

-3.8 

-4.8 

-11.7 

3.6 

8.8 

7.0 

1.5 

1.0 

1.3 

-2.0 

-2.1 

-15.6 

-0.4 

-10.1 

1.1 

-0.9 

-2.1 

-3.7 

-4.5 

-4.0 

-5.4 

-6.5 

-4.7 

-6.0 

-13.3 

2.1 

1.8 

-1.3 

-1.8 

-4.1 

-2.2 

-2.0 

-2.5 

-5.2 

-0.9 

-9.1 

 

* 6-31++G(d,p) ZPE Corrected 

†
 //MP2(EFP1/DFT) 6-31++G(d,p) ZPE Corrected 
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Table 5.  Average energy contributions to the N-Z energy difference for each N isomer 

relative to each Z isomer, for the addition electronic correlation energy (MP2) and con-

tinuum solvation (PCM) to the HF(EFP1/HF)//EFP2 N-Z relative energies. 

 

 

 

(H20)n MP2 Correction MP2+PCM Correction 

1 6.8 29.9 

2 6.7 25.7 

3 5.3 20.1 

4 4.6 16.6 

5 3.9 12.9 

6 3.1 9.6 

7 4.3 9.6 

8 2.5 9.3 

16 1.3 2.7 

24 0.3 0.8 

32 0.9 0.3 
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Table 6. Total binding energy (kcal/mol) for N and Z alanine as a function of n waters at 

the HF, DFT/B3LYP, and MP2 levels of theory. 

 

 

 

 Total Binding Energy - N  Total Binding Energy - Z 

n HF DFT MP2  HF DFT MP2 

1 -6.3 -8.5 -8.4           -13.0 -14.9 -15.1 

2 -13.9 -17.9 -17.8  -23.7 -27.0 -27.9 

3 -19.6 -24.7 -25.5  -33.5 -47.6 -45.7 

4 -32.4 -38.7 -38.4  -43.1 -59.8 -60.7 

5 -33.1 -43.0 -43.1  -51.8 -68.2 -68.7 

6 -38.8 -51.9 -51.7  -67.9 -80.8 -81.3 

7 -44.2 -64.9 -65.2  -71.8 -89.8 -90.5 

8 -49.5 -67.9 -74.2  -81.2 -93.7 -98.3 

16 -102.2 -143.4 -145.2  -135.3 -169.4 -170.4 

24 -152.6 -201.9 -205.3  -190.4 -247.8 -248.8 

32 -196.4 -272.4 -272.3  -225.4 -311.1 -312.2 
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Table 7. Differential binding energy (kcal/mol) for N and Z alanine as a function of n wa-

ters at the EFP2, HF, DFT/B3LYP, and MP2 levels of theory. 

 

  (!De) - Neutral       (!De) - Zwitterion  

(H20)n EFP2 HF DFT MP2     EFP2 HF DFT MP2 

1 -9.1 -7.6 -9.4 -9.4     -19.2 -10.7 -12.2 -12.7 

2 -17.3 -5.4 -6.3 -7.4     -19.7 -9.8 -12.3 -10.0 

3 -15.1 -12.9 -13.9 -12.8     -17.9 -9.6 -12.2 -14.8 

4 -10.2 -0.7 -4.4 -4.8     -12.6 -8.7 -8.4 -8.0 

5 -13.2 -5.8 -8.8 -8.5     -15.7 -7.4 -12.5 -12.7 

6 -7.7 -5.3 -7.5 -7.5     -13.1 -8.6 -9.0 -9.2 

7 -9.1 -5.4 -8.7 -8.5     -14.0 -9.4 -12.2 -12.3 
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Figure 1. L form neutral alanine conformer structures and energies(relative to ALA 1 L) 

at RHF/6-31++G(d,p), MP2/6-31++G(d,p), PCM+RHF/6-31++G(d,p), PCM+RHF/6-

31++G(d,p) levels of theory.   

 

 

 

 

ALA7L 5.4 6.4 3.8 4.5 ALA8L 5.8 6.8 4.1 4.9  

 

 

 

 

 

ALA5L -0.5 0.3 1.9 2.3 ALA6L 4.2 5.6 3.2 4.1 

 

 

 

 

 

ALA3L -1.2 0.6 1.3 .04 ALA4L 5.8 6.8 1.3 2.4  

 

 

 

 

 

ALA1L 0.0 0.0 0.0 0.0 ALA2L -2.8 -0.7 0.4 -0.7  
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Figure 2. D form neutral alanine conformer structures and energies (relative to ALA 1 D) 

at RHF/6-31++G(d,p), MP2/6-31++G(d,p), PCM+RHF/6-31++G(d,p), PCM+MP2/6-

31++G(d,p) levels of theory. 

 

 

 

 

ALA7D 5.4 6.4 3.8 4.1 ALA8D 6.0 7.0 4.1 5.1  

 

 

 

 

 

ALA5D -0.5 0.3 1.8 2.3 ALA6D 4.2 5.6 3.1 4.1 
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Figure 3. Alanine zwitterion and the three rotamers (45˚, 90˚ rotation of the COO
- 
group 

about the C-C bond, 60˚ rotation of NH3
+
 group about the N-C bond) used in Monte Carlo 

simulations. 
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0.0 0.0 0.0 0.0 0.0 

N1-1 

 

20.4 17.5 16.3 8.2 2.1 

Z1-1 

-6.5 -3.3 -3.9 -5.7 0.5 

N1-2 

 

-2.2 0.4 -0.1 -0.1 2.7 

N1-3 Z1-1 (alternative view) 

Figure 4. Alanine and one water. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the N form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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20.6 16.4 15.3 13.9 1.8 
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20.5 14.5 13.7 10.2 1.8 

 

Z2-2 

6.0 2.9 3.2 

 

2.6 4.8 

 

N2-4 

Figure 5. Alanine and two waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the N form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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N3-1 
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-8.3 

 

-7.7 -7.7 1.3 

 

Figure 6. Alanine and three waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 7. Alanine and four waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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-2.8 -3.4 -3.4 -10.1 
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-0.5 -5.1 5.8 

N5-2 

Figure 8. Alanine and five waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 9. Alanine and six waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 10. Alanine and seven waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 11 Alanine and eight waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 12. Alanine and 16 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)/6-31++G(d,p). The Z and N form minima with repre-

sentative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water)/6-

31++G(d,p). 
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Figure 13. Alanine and 24 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 14. Alanine and 32 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N form minima with represen-

tative higher energy structures. Energies (kcal/mol) are relative to the Z form global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Abstract 

 The solvation of alanine is investigated, with a focus on adding a sufficient num-

ber of discrete water molecules to determine the first solvation shell for both the nonion-

ized (N) and zwitterionic (Z) forms in order to converge the enthalpy of solvation and the 

enthalpy difference for the two forms of alanine. Monte Carlo sampling was employed 

using the generalized effective fragment potential (EFP) method to determine the global 

minimum of both conformers, with the number of EFP water molecules ranging from 32-

49. A subset of sampled geometries were optimized with second order perturbation the-

ory (MP2) using the 6-31++G(d,p) basis set. Single point energies were calculated at 

these geometries using the polarizable continuum model (PCM). The predicted 298.15K 

enthalpy of solvation for MP2/6-31++G(d,p) and MP2+PCM//MP2/6-31++G(d,p) ranges 

from 10.0-13.2 kcal/mol and 10.1-12.6 kcal/mol, respectively.  

Introduction 

 Amino acid solvation is of considerable interest due to its role in biology and bio-

chemistry. Neutral amino acids exist predominantly in their nonionized form (N) in the 

gas phase, while in solution or in crystals alanine is observed in the zwitterionic form 

(Z).
1 

Varying the pH can cause alanine to exist as N, Z, anionic, or cationic species. The 

transition from neutral to zwitterion has been shown to be a consequence of the greater 
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stabilization of the Z relative to the N species, due to the formation of hydrogen bond-

ing networks. The experimental free energy and enthalpy for the process Z(aq)  ! N(aq) are 

7.3 and 10.3 kcal/mol, respectively, for glycine,
2 

while the corresponding experimental 

values for alanine do not appear to be available. 

The N ! Z transition has been studied by systematic addition of water mole-

cules for glycine and alanine previously.
3-5

 Aikens and Gordon used Møller-Plesset per-

turbation theory (MP2)
6
 single point energies at restricted Hartree Fock (RHF)

7
 geo-

metries with a 631++G(d,p)
8
 basis set, MP2//RHF/631++G(d,p). The polarizable contin-

uum model (PCM)
9
 was included to model bulk solvation. These authors determined 1.8 

and 6.0 kcal/mol enthalpies for the process N ! Z (!HN
!

Z) using 

MP2//RHF/631++G(d,p), and MP2+PCM//RHF/631++G(d,p) respectively with eight wa-

ter molecules
3

. Aikens and Gordon noted that convergence had probably not been 

achieved at this number of water molecules. Chuchev and BelBruno found a 6.6 and 5.2 

kcal/mol enthalpy for the alanine N ! Z transition (!HN
!

Z) using density functional the-

ory (DFT/B3LYP)
10

 and MP2 single points, respectively, at the DFT geometry for 10 wa-

ters.
4
 The authors of the present work studied alanine in the presence of up to 32 effective 

fragment potential (EFP1)/DFT
11

 waters and found !HN
!

Z = 11.7 kcal/mol, 10.1 

kcal/mol or 9.1 kcal/mol using MP2//EFP2, MP2(EFP1/DFT) or 

PCM+MP2//MP2(EFP1/DFT), respectively, with 32 waters.
5
 

The aforementioned studies used discrete explicit solvent models in order to in-

vestigate the hydrogen bonded interaction between water molecules and the amino acid, 

adding a continuum (implicit) solvent as a third layer to simulate complete solvation. 

This work builds upon the previous analysis that included up to 32 discrete water mole-
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cules, and additionally explores the importance of including a continuum description 

of the solvent. The salient aspects of the 32-water calculations are included here as a 

starting point for further investigation of up to 49 explicit water molecules.  

Aikens and Gordon
3
, Chuchev and BelBruno

4
 and the authors

5
 identified the Z 

species as the global minimum structure with the addition of seven waters when dynamic 

correlation (e.g., DFT or MP2) is included. Neither Aikens and Gordon nor Chuchev and 

BelBruno obtained a converged !HN
!

Z with discrete waters, although the latter authors, 

using MP2+PCM, observed a !HN
!

Z that oscillated between 6.0 and 8.8 kcal/mol for ad-

dition of 3-8 waters. In the previous systematic study of up to 32 waters
5
, it was found 

that the alanine Z global minimum appears to be fully solvated by water, whereas the N 

global minimum is only partially solvated. The Z-N enthalpy difference fluctuates as one 

proceeds to 16, 24 and 32 waters. The Boltzmann averaged MP2 !HN
!

Z predicted for 32 

waters is 12.6, 13.3, or 11.5 kcal/mol using MP2(EFP1/DFT)//EFP2, MP2(EFP1/DFT) or 

PCM+MP2//MP2(EFP1/DFT), respectively. However, it is not clear that convergence 

has been attained at 32 water molecules. Therefore, systematic solvation from 33-49 wa-

ters is undertaken in this study. 

An important consideration when exploring solvent effects with discrete solvent 

molecules is the large number of degrees of freedom that must be sampled in order to lo-

cate the global and all important low-lying minima. Monte Carlo (MC)
12

 simulations are 

often employed to sample the configuration space.  Such simulations can be very time-

consuming since one often needs to explore millions of structures. In this work, the gen-

eralized effective fragment potential (EFP2)
13-17

 method is employed to represent the 

alanine molecule in various conformations and the water molecules. Once the configura-
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tion space has been sampled, a higher level of theory can be employed for the most 

important configurations. An efficient approach is to use quantum mechanics (QM) for 

the solute and a model potential (e.g., the EFP method) for the solvent.  For these 

QM/MM calculations, water is described by the water-specific EFP1 method.
11,18,19

  

The effective fragment potential (EFP1) and generalized effective fragment po-

tential (EFP2) 

 EFP1 was designed specifically for water and is represented by a set of one-

electron potentials that are added to the ab initio electronic Hamiltonian. The general ap-

proach is to derive two terms that represent Coulomb and induction (polarization) interac-

tions and to then fit the remainder term to some ab initio level of theory. The Coulomb 

term is obtained from a Stone
20

 distributed multipolar analysis, with the atom centers and 

the bond midpoints used as expansion points. The induction term is obtained from a set of 

distributed localized molecular orbital (LMO) polarizabilities. Therefore, the number of 

bonds and lone pairs equal the number of polarizability points. Many body effects are 

captured by iterating this dipole–induced dipole term to self-consistency. The multipoles 

and the polarizabilities are obtained from the chosen ab initio level of theory. Both of 

these terms are multiplied by damping (screening) expressions to account for near-field 

behavior.  

One version of EFP1 is based on Hartree-Fock theory and is called EFP1/HF.
18

 

For EFP1/HF, the remainder term includes exchange repulsion and charge transfer. In the 

B3LYP
10 

density functional theory version of EFP1 (EFP1/DFT),
11 

the remainder term 

includes, in addition, short range correlation effects. The third version of EFP1 is based 

on second order Møller-Plesset perturbation theory (EFP1/MP2).
 
EFP1/MP2

19
 adds a 
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term that represents dispersion interactions, as well as second order corrections to the 

Coulomb and polarization terms. EFP1/HF and EFP1/DFT have both been interfaced 

with several levels of ground and excited state electronic structure theory, while 

EFP1/MP2 is currently only available for solvent-solvent, not solvent-solute, interactions 

and is not used in this study. 

 Recently, a more general version of EFP (EFP2) that is applicable to any molecu-

lar species has been developed.
13

 EFP2 may be expressed in terms of five interaction en-

ergy terms: 

E = Ecoul + Eind + Eexrep + Edisp + Ect,        (1) 

The first two terms in Eq. (1), the Coulomb and induction interactions, are the same as 

those in EFP1. The remaining three terms represent interactions due to exchange-

repulsion(Eexrep), dispersion(Edisp) and charge transfer(Ect). Each of the terms in Eq. (1) is 

obtained from first principles with no empirically fitted parameters. The exchange repul-

sion is derived as an expansion in the intermolecular overlap. When this overlap expan-

sion is expressed in terms of frozen LMOs on each fragment, the expansion can reliably 

be truncated at the quadratic term. This term does require each EFP to carry a basis set. 

Since the same basis set is used to generate the multipoles and the molecular polarizabil-

ity tensor, EFP calculations are basis set dependent.  

Dispersion interactions are often expressed by an inverse R expansion,  

,        (2)

 

where the coefficients Cn may be derived from the (imaginary) frequency dependent po-

larizabilities integrated over the entire frequency range.
15

 The first term in the expansion, 
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n=6, corresponds to the induced dipole-induced dipole (van der Waals) interactions. 

Damping of the dispersion term is formulated in terms of the LMO overlap.
16

 

 The charge transfer interaction is derived using a supermolecule approach, in which 

the occupied valence molecular orbitals on one fragment are allowed to interact with the 

virtual orbitals on another fragment.
17

 This interaction term leads to significant energy 

lowering in ab initio calculations on ionic or highly polar species when incomplete basis 

sets are employed.  

Computational methods 

 Gas phase results for N alanine were obtained with restricted Hartree-Fock
7
 

(RHF) and second order Møller-Plesset perturbation theory
6 

(MP2) using the 6-

31++G(d,p) basis set.
8
 In order for the Z structures to be local minima in the absence of 

discrete water molecules, their structures must be optimized in the presence of a contin-

uum solvent. The PCM approach
9
 is used here for this purpose. The PCM uses van der 

Waals radii for cavity generation (see www.msg.chem.iastate.edu for details). The values 

used in these calculations may be found in the GAMESS manual. The Z structures were 

determined using the RHF/6-31++G(d,p) method, including the PCM continuum (de-

noted RHF+PCM). The N structures were obtained using the same combination of meth-

ods. To obtain more accurate energies, MP2+PCM single point calculations were per-

formed at the RHF+PCM structures. 

As discussed in the previous work,
5
 the focus here is on the L-alpha alanine. Op-

timized “gas-phase” structures are illustrated in Figures 1 and 2 for the N and Z species, 

respectively. In Figure 2, several internal rotational Z structures are included. Since the 

EFP model has internally frozen geometries, this is an effective way to sample different Z 
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arrangements. This is useful for future reference when water molecules are added.  

The Monte Carlo(MC)
12

 with simulated annealing (SA)
21

 method was used to 

sample the potential energy surface. It has been demonstrated that the EFP2 method pro-

vides reliable structures for amino acid – water clusters. Therefore, for computational ef-

ficiency, the MC simulations were carried out using the EFP2 method for both the solute 

and solvent. The molecular structures used to create the EFP2 for N and Z alanine were 

taken from RHF+PCM calculations. All eight forms of L-alanine shown in Figure 1 were 

used in the MC simulations. For Z alanine an EFP2 was generated for the L enatiomer 

and the three Z rotamers shown in Figure 2. The MC/SA method with local minimization 

was used to sample the configuration space. For each global minimum found, the number 

of structures sampled was on the order of 500,000 – 1,300,000. The number of steps 

taken for each temperature was varied from 100 to 10,000. The number of steps between 

local optimizations was varied from 10 to 1,000. The number of fragments moved per 

step was varied between one and five. The starting temperature for the simulated anneal-

ing varied from 500 to 20,000 K and the final temperature was 300 K. For each alanine 

isomer in the presence of a given number of waters, a minimum energy structure was 

found from MC/SA simulations. Additional higher energy structures were selected in 0.6 

kcal/mol increments. Further optimizations and Hessians (matrices of energy second de-

rivatives) were calculated at the EFP2 level of theory. From this set, a minimum energy 

structure was found and additional higher energy structures selected in steps of 1.2 

kcal/mol. Then, after visual examination of the second subset, unique structures were op-

timized and verified to be potential energy minima by diagonalizing the corresponding 

Hessians, using MP2 for the alanine and EFP1/DFT for the water, MP2(EFP1/DFT), to 
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assess the accuracy of EFP2. Single points including PCM+MP2 were run at the 

MP2(EFP1/DFT) optimized geometries. All energies reported in the following sections 

have been corrected for the vibrational zero point energy. All calculations were per-

formed with the general atomic and molecular electronic structure system (GAMESS),
22

 

which is freely available from Iowa State University. Structures were visualized with 

MacMolPlot,
23

 a graphical interface to GAMESS. 

Results 

Alanine monomer 

 All neutral L alanine structures in Figure 1 were used in the Monte Carlo (MC) 

simulations. For the Z conformer of L alanine, the EFP2 conformational rotamers (45˚, 

90˚ rotation of the COO
- 
group about the C-C bond, 120˚ rotation of NH3

+
 group about 

the N-C bond) in Figure 2 were used in the MC simulations. Previous work showed that 

the D chiral analogs did not significantly alter the relative N ! Z energy.
5
 

Continuum Calculations 

The HF+PCM/6-31++G(d,p) continuum method predicts the Z to be lower in en-

ergy than the N species; however, this difference is only 0.8 kcal/mol. The importance of 

including electron correlation has been demonstrated in previous studies.
3-5

 A 

MP2+PCM/6-31++G(d,p) single point calculation at the HF+PCM geometry predicts the 

Z to be 1.8 kcal/mol lower in energy. MP2 may alter the gradient, and consequently, the 

geometry as well. When discrete waters are added to the system, the strengths of the hy-

drogen bonds formed between the solvent molecules and the N and Z isomers differ,
5
 and 

the continuum solvent may not fully capture this differential effect. However, A com-

bined discrete+continuum approach might result in a faster convergence of the Z-N en-
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ergy difference.  

In the following subsections the impact of increasing the number of water mole-

cules on the N-Z equilibrium is examined, as are the detailed structures. The key Z and N 

structures and their relative energies are shown in Figures 3-9. A subset of these figures is 

discussed here. The remaining figures are available in Supplementary Material. The or-

dering of the structures in these figures is determined by the relative energies determined 

by the MP2+PCM/6-31++G(d,p) calculations, since MP2+PCM is considered to be the 

highest level of theory in this work. 

Alanine(H2O)32   Figure 3 

 This previous paper on the aqueous solvation of alanine examined the addition of 

up to 32 water molecules
5
. This is the starting point for the further systematic addition of 

waters that is explored in this work. The lowest energy 32-water N isomer, N32-1, does 

not appear to be fully solvated. However, with 32 waters in the system, it is possible to 

find structures, such as N32-4, that appear to be fully solvated; that is completely sur-

rounded by water molecules. At the highest level of theory, N32-4 is ~15 kcal/mol above 

N32-1, so the fully solvated species is clearly not the lowest energy N isomer. This may 

be due to the resistance of the nonpolar hydrocarbon moiety to aqueous solvation. The 

two lowest energy Z isomers, Z32-1 and Z32-2 are separated by only 2 kcal/mol, and 

both are more fully solvated than the N species. The two lowest energy N isomers are 9.1 

and 9.6 kcal/mol, respectively, higher in energy than Z32-1 at the highest level of theory.  

Alanine(H2O)33   Figure 4 

 The global minimum on the Z potential energy surface (Z33-1) results from an N 

isomer undergoing intramolecular hydrogen transfer when optimized with the alanine as 
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MP2 and the water as EFP1, MP2(EFP1/DFT)/6-31++G(d,p). This emphasizes the 

importance of ab initio optimization on a subset of species sampled from the MC simula-

tions. The MC sampling of the zwitterion-(H2O)33 potential energy surface did find simi-

lar, energetically competitive (~1-3 kcal/mol higher in energy), structures compared to 

Z33-1. These structures also exhibit partial solvation, excluding the methyl group. N33-1 

is a partially solvated structure 2.0 kcal/mol higher in energy than Z33-1 at the 

MP2(EFP1/DFT) optimized level of theory, and 9.7 kcal/mol higher when adding PCM 

in a single point calculation, MP2+PCM//MP2(EFP1/DFT)/6-31++G(d,p).  Partially sol-

vated clusters predominate the low-energy N isomers. For example, N33-2 and N33-3 are 

8-12 and 10-20 kcal/mol above Z33-1 with MP2 and MP2+PCM, respectively. However 

there are collections of structures, represented by N33-4, in the energetic range of 20-30 

kcal/mol above Z33-1 that may be considered fully solvated neutral isomers. 

Alanine(H2O)36   Figure 5 

 In the 36-water lowest energy N minimum, N36-1, the methyl group is unsol-

vated, and the hydrogen bonding moieties, COOH and NH2 are on the surface of a water 

cluster. In N36-2, about 1 kcal/mol higher in energy than N36-1, a water cluster forms 

around the methyl group with the COOH and NH2 groups forming hydrogen bonds with 

the water molecules in the cluster, primarily as surface interactions. The Z36-1 – N36-1 

energy difference, is ~13.6 kcal/mol. The PCM contributes ~1.5 kcal/mol to this energy 

difference. The addition of PCM has a large (9.4 kcal/mol) stabilizing effect on the en-

ergy of Z36-2 relative to Z36-1 stemming from a difference in the contribution of the hy-

drogen bonding pairs of COO
-
 and NH3

+
 surface areas to the PCM cavity. The higher en-

ergy N species N36-3 and N36-4 are both examples of mostly solvated neutral alanine 
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isomers that are 15-20 kcal/mol higher in energy than the lowest energy N structure. 

Alanine(H2O)41   Figure 6 

 In Z41-1 and Z41-2, one carboxylate oxygen atom participates in a surface hy-

drogen bond. This surface hydrogen bond appears to be correlated with large ( >3 

kcal/mol) changes in relative energies when using PCM+MP2 compared to MP2. N41-1 

is 15.7 (20.0) kcal/mol higher in energy relative to Z41-1 at the MP2 (MP2+PCM) level 

of theory. In N41-1 the water forms a large ring around the methyl, mostly solvating the 

alanine. Such structures typically lie ~20 kcal/mol higher in energy that the global mini-

mum. N41-2 is only slightly higher in energy than N41-1 and has the alanine adjacent to 

and forming hydrogen bonds with the water cluster, with hydrogen via the COOH and 

NH2 groups. N41-3 and N41-4 are both fully solvated, and 4 and 7 kcal/mol, respectively 

above N41-1. N41-3 exhibits a solvation sphere around the methyl, whereas the N41-4 

has an elongated water cluster that is roughly perpendicular to the COOH and NH2 moie-

ties. 

Alanine(H2O)46   Figure 7 

 For 46 water molecules, the two lowest energy Z structures, Z46-1 and Z46-2, 

appear to be fully solvated. N46-1 is the first example of a fully solvated N species that is 

also the lowest energy N isomer, ~12 kcal/mol above Z46-1 at the highest level of theory. 

The Z-N enthalpy differences are within the expected range, based on the glycine !HN
!

Z 

of 10.3 kcal/mol.2 The Z isomers are separated by 1.3 kcal/mol at the same level of the-

ory. N46-1 and N46-3 appear at first glance to be similar; however, N46-1 has more hy-

drogen bonds (defined as an O-O distance less than 3 Å and an OOH angle less than 

150˚). In N46-2 the alanine forms surface hydrogen bonds with a water cluster; similar 
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structures are found as the N lowest energy minima for smaller numbers of water 

molecules.  

Alanine(H2O)48   Figure 8 

 The two lowest energy Z structures, Z48-1 and Z48-2, differ by only 2.4 kcal/mol 

at the highest level of theory and have similar, fully solvated structures. In Z48-1 the wa-

ter molecules that sit below the NH3
+
 group are arranged approximately in a prism struc-

ture, while in Z48-2 these six waters are arranged in a chair-like conformation. In both 

cases, Z48-1 and Z48-2, these six waters appear to the beginning of a second solvent 

shell. Z48-1 is 10.5 kcal/mol lower in energy than N48-1, the N global minimum, at the 

highest level of theory. All of the N isomers presented in Figure 19 are fully solvated. 

With 48 water molecules present, partially solvated structures have become less common 

in the MC simulations. The N alanine isomers 1L and 2L (Figure 1) predominate in the 

lower energy structures.  

Alanine(H2O)49   Figure 9 

 The two lowest 49-water Z species, Z49-1 and Z49-2, differ in energy by 3.3 

kcal/mol at the highest level of theory, MP2+PCM. The structures show an expanded re-

gion of water molecules around the methyl group. It appears that the water is now truly 

beginning to form a second solvation sphere. Z49-1 is 11.5 kcal/mol lower in energy than 

N49-1. Most low-energy N structures are fully solvated, although there are still popula-

tions of separated alanine and water clusters exhibited by N49-2, which are ~15-20 

kcal/mol higher in energy than Z49-1. N49-3 and N49-4 represent higher energy solvated 

isomers.  

Summary 
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 Table 1 presents a summary of the Z-N 0˚K enthalpy differences discussed in 

the previous sub-sections, as well as the temperature corrected enthalpies at 298.15˚K. 

The zero point vibrational corrections and the temperature corrections were obtained us-

ing the harmonic oscillator and rigid rotor approximations. All of the enthalpy differences 

presented in Table 1 oscillate as the number of water molecules is increased, especially 

for n = 32 until n = 46. From n = 46 to n = 49, these oscillations are much smaller, rang-

ing from ~10 kcal/mol to ~12.5 kcal/mol. This is in the range of the anticipated enthalpy 

difference for alanine. The temperature corrections to 298K have little impact on the 

computed values. The point at which the two alanine species, Z and N, appear to become 

fully solvated is not the same. Starting from 42 water molecules, the global Z minimum 

appears to be fully solvated, while this point only occurs at 46 water molecules for the N 

global minimum. 

Boltzmann averaging 

 Boltzmann averaged energies were calculated for each water cluster using the 

Boltzmann equation: 

X
i
e
!"E

i
/RT

i

#

e
!"E

i
/RT

i

#
= X

n
 ,          (3) 

where Xi is the calculated property (e.g., the energy) of the ith structure, corrected with  

zero point vibrational energy. !Ei is calculated by taking the difference between the en-

ergy of the ith structure and the energy of the lowest energy structure for a given n; T = 

273 K. Xn is the Boltzmann averaged value of X for all unique structures determined by  

MP2(EFP1/DFT)/6-31++G(d,p) optimizations for a given number (n) of waters. Boltz-

mann averaged Z-N energies are presented in Table 2. These enthalpies do not change 
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from those reported in Table 1 by more than 1 kcal/mol.  

Correlation energy and continuum solvation  

 Table 3 presents the effects of correlation energy and continuum solvation on the 

Z-N 0˚K enthalpy differences. The correlation energy contribution is determined by sub-

tracting the MP2(EFP1/DFT)/6-31++G(d,p) enthalpy from the RHF(EFP1/DFT)/6-

31++G(d,p) enthalpy. The continuum energy contribution is determined by subtracting 

the MP2+PCM//MP2(EFP1/DFT)/6-31++G(d,p) enthalpy from the MP2(EFP1/DFT)/6-

31++G(d,p) enthalpy. The Boltzmann averaged estimates of the correlation and contin-

uum corrections are very similar to those obtained from the simple differences between 

the respective global minima. The two corrections oscillate somewhat as the number of 

water molecules present increases. The oscillations in the correlation corrections are 

smaller than those due to the continuum corrections.  Once n = 46, the latter oscillations 

decrease as well. In this range the both corrections are ~2 kcal/mol or less. The N global 

minimum is fully solvated by the addition of 46 waters, and alanine does not significantly 

contribute the electrostatic stabilization of the PCM cavity. This may be part of the rea-

son why the PCM oscillations with 46 or more water molecules greater are smaller. The 

approach to complete solvation appears to be neither monotonic nor linear. In addition, as 

the number of water molecules is increased, the complexity of determining the global 

minimum increases, the exploration of millions of configurations notwithstanding. Both 

of these factors very likely contribute to the oscillations seen in Tables 1-3.  

Conclusions 

The solvation of alanine by water, and the alanine enthalpy change for the N ! Z 

isomerization (!HN
!

Z), has been studied by systematically adding 32-49 waters. At ap-
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proximately 42 waters, the Z alanine - water complex becomes consistently fully sol-

vated. Starting at 45 waters, the solvent structure varies predominately in the placement 

of a few surface water molecules. Therefore, 41-45 waters may be thought of as the first 

solvent shell. The additional waters beyond this are relatively free to move on the outside 

of the shell, beginning a second solvation shell. Fully solvated N alanine arrangements 

appear at 32 waters, but these structures are significantly higher in energy than the N 

minimum. At about 42 water molecules, fully solvated N alanine structures begin to be 

energetically competitive with the partially solvated global N minimum. At 46 waters 

both the Z and N global minima are fully solvated. This also begins the stabilization of 

the !HN
!

Z.  

Initial studies
5
 of alanine solvated by PCM alone yield a !HN

!
Z of 1.8 kcal/mol, 

which is in qualitative, but not quantitative agreement with the anticipated experimental 

value. PCM does not significantly change the relative Z-N energies for water structures 

which completely solvate the alanine molecule. Upon the addition of 46 waters both the 

N global minimum and Z global minimum are fully solvated. The contributions from 

PCM are then small, ~ 2 kcal/mol. The correlation contributions to the 0K enthalpies are 

smaller than the continuum solvent contributions. Correlation energy may effect the iden-

tification of global minima for a given number of water molecules (e.g., n = 44). There-

fore, correlation energy corrections must be included for a complete description of the 

!HN
!

Z. 

The trends and the absolute Z-N enthalpy differences are essentially the same for 

the 0K and 298K differences in the global minima, as well as for the 0K Boltzmann aver-

ages. Significant oscillation in these differences is observed until about 46 water mole-



www.manaraa.com

                                                                                                                                                                         !"#$

cules, whereupon the enthalpy difference settles down to ~10-12 kcal/mol. The oscil-

lations in these enthalpy differences are ascribed to the lack of monotonic convergence to 

fully solvated species for the Z and N species and to the difficulty in determining global 

minima with large numbers of water molecules. Nonetheless, the enthalpy difference ap-

pears to converge to a value that is consistent with experimental expectations. The 

!HN
!

Z of glycine is 10.3 kcal/mol,2 and one would expect alanine to have a similar value. 

It appears that the alanine value is converged to within ~2.5 kcal/mol. There is no reason 

to assume !HN
!

Z converges quickly. 
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Figure Captions 

Figure 1. L neutral alanine conformer structures and energies (relative to ALA 1 L) at 

RHF/6-31++G(d,p), MP2/6-31++G(d,p), PCM+RHF/6-31++G(d,p), PCM+RHF/6-

31++G(d,p) levels of theory. 

Figure 2. Alanine zwitterion and the three rotamers (45˚, 90˚ rotation of the COO
- 
group 

about the C-C bond, 60˚ rotation of NH3
+
 about the N-C bond) used in Monte Carlo.  

Figure 3. Alanine and 32 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 4. Alanine and 33 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 5. Alanine and 36 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 6. Alanine and 41 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 
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minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 

6-31++G(d,p). 

Figure 7. Alanine and 46 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 8. Alanine and 48 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure 9. Alanine and 49 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 



www.manaraa.com

                                                                                                                                                                         !!"#

 

Table 1. 

0˚K and 298.15˚K Enthalpy of N-Z transition with MP2(EFP1/DFT)/6-31++G(d,p) opti-

mization and MP2+PCM//MP2(EFP1/DFT)/6-31++G(d,p) levels of theory. Zero point 

energy corrected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 6-31++G(d,p) ZPE Corrected 

 0˚K Enthalpy 298.15˚K Enthalpy 

 
MP2(EFP1/DFT)* 

MP2+PCM// 

MP2(EFP1/DFT)* 
MP2(EFP1/DFT)* 

MP2+PCM// 

MP2(EFP1/DFT)* 

(H2O)n Z-N  Z-N Z-N Z-N 

32 10.1 9.1 12.2 13.1 

33 2.0 9.7 6.1 13.8 

34 11.7 15.6 11.6 16.2 

35 6.0 8.5 4.7 7.3 

36 12.1 13.6 11.1 12.6 

37 7.0 3.6 6.9 3.5 

38 12.3 13.2 12.4 13.3 

39 6.0 10.6 6.0 10.5 

40 10.7 11.4 11.5 12.0 

41 15.7 20.0 15.4 19.6 

42 5.8 6.8 5.9 6.9 

43 10.8 8.8 9.8 8.5 

44 15.7 8.1 15.4 7.8 

45 5.4 6.9 5.2 6.8 

46 13.1 12.1 13.2 12.3 

47 10.1 12.6 10.0 12.6 

48 12.2 10.5 11.8 10.1 

49 12.2 11.6 12.5 11.9 
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Table 2. 

Boltzmann averaged 0˚K and 298.15˚K Enthalpy of N-Z transition for 

MP2(EFP1/DFT)/6-31++G(d,p) optimization and MP2+PCM//MP2(EFP1/DFT)/6-

31++G(d,p) levels of theory. Zero point energy corrected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

* 6-31++G(d,p) ZPE Corrected 

 0˚K Enthalpy 298.15˚K Enthalpy 

 MP2(EFP1/DFT)* 
MP2+PCM// 

MP2(EFP1/DFT)* 
MP2(EFP1/DFT)* 

MP2+PCM// 

MP2(EFP1/DFT)* 

(H2O)n Z-N Z-N Z-N Z-N 

32 10.1 9.2 12.3 13.3 

33 2.0 9.8 6.1 13.8 

34 11.7 15.7 11.6 16.4 

35 6.0 8.5 4.7 7.3 

36 12.3 13.8 11.1 12.6 

37 7.1 3.6 7.1 3.5 

38 12.4 13.2 12.4 13.3 

39 6.0 10.7 6.0 10.6 

40 10.7 11.6 11.5 12.1 

41 15.8 20.1 15.4 19.8 

42 5.8 6.8 5.9 6.9 

43 10.8 8.8 9.8 8.5 

44 15.7 8.1 15.5 7.8 

45 5.2 6.8 5.2 6.8 

46 13.1 12.0 13.2 12.3 

47 10.1 12.6 10.0 12.6 

48 12.2 10.5 11.8 10.1 

49 12.2 11.6 12.5 11.9 
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Table 3. 

Effect of including electron correlation and the continuum solvent. Both non-Boltzmann 

averaged (i.e., Z-N global minimum 0K enthalpy differences) and Boltzmann averaged 

0˚K enthalpy differences are presented. The correlation energy contribution is 

MP2(EFP1/DFT)/6-31++G(d,p) subtracted from RHF(EFP1/DFT)/6-31++G(d,p). The 

continuum energy contribution is MP2+PCM//MP2(EFP1/DFT)/6-31++G(d,p) subtracted 

from MP2(EFP1/DFT)/6-31++G(d,p). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

non-

Boltzmann 

averaged 

Boltzmann 

averaged 

non-

Boltzmann 

averaged 

Boltzmann 

averaged 

(H2O)n Correlation Continuum 

32 -0.6 -0.6 -1.0 -1.1 

33 1.4 1.4 -7.7 -7.8 

34 -0.1 -0.1 -3.9 -3.9 

35 1.3 1.3 -2.5 -2.5 

36 -1.3 -1.3 -1.5 -1.5 

37 3.7 3.8 3.4 3.5 

38 0.7 0.7 -0.8 -0.8 

39 2.1 2.2 -4.6 -4.6 

40 0.1 0.1 -0.7 -0.9 

41 -2.5 -2.6 -4.2 -4.2 

42 3.2 3.2 -1.0 -1.0 

43 0.1 0.1 1.5 1.5 

44 -2.4 -2.5 7.6 7.7 

45 -1.0 -1.0 -1.5 -1.6 

46 -1.7 -1.9 1.0 1.1 

47 -1.3 -1.3 -2.6 -2.6 

48 -0.7 -0.7 1.7 1.8 

49 -0.6 -0.7 0.6 0.6 
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Figure 1. L form neutral alanine conformer structures and energies(relative to ALA 1 

L) at |RHF/6-31++G(d,p)|, MP2/6-31++G(d,p), {RHF+PCM/6-31++G(d,p)}, 

[MP2+PCM/6-31++G(d,p)//MP2/6-31++G(d,p)] levels of theory.   

 

 

 

 

 

 

 

 

 

 

 ALA 7L    |5.4|    6.4    {3.8}    [4.5]  ALA 8L    |5.8|    6.8    {4.1}    [4.9] 

 

 

 

 

 

 

 

 

 

 

 ALA 5L    |-0.5|    0.3    {1.9}    [2.3]  ALA 6L    |4.2|    5.6    {3.2}    [4.1] 

 

 

 

 

 

 

 

 

 

 ALA 5L    |-1.2|    0.6    {1.3}    [0.4]  ALA 6L    |-1.5|    0.3    {1.3}    [2.4] 

 

 

 

 

 

 

 

 

 

 

 ALA 5L    |0.0|    0.0    {0.0}    [0.0]  ALA 6L    |-2.8|    -0.7    {0.4}  [-0.7] 
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Figure 2. Alanine zwitterion and the three rotamers used in Monte Carlo. 
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Figure 3. Alanine and 32 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure 4. Alanine and 33 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MP2//MP2 (EFP1/DFT water) 6-31++G(d,p) 
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Figure 5. Alanine and 36 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MP2//MP2 (EFP1/DFT water) 6-31++G(d,p) 
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Figure 6. Alanine and 41 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 7. Alanine and 46 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 8. Alanine and 48 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure 9. Alanine and 49 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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SUPPLEMENTARY MATERIAL  
(CHAPTER 3. ALANINE: FROM PUDDLES TO PONDS) 

 

Figure S1. Alanine and 34 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S2. Alanine and 35 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S3. Alanine and 37 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S4. Alanine and 38 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S5. Alanine and 39 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-
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resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S6. Alanine and 40 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S7. Alanine and 42 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S8. Alanine and 43 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 

Figure S9. Alanine and 44 waters. Structures initially from Monte Carlo simulations, then 

optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown with rep-

resentative higher energy structures. Energies (kcal/mol) are relative to the Z global 

minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT water) 6-

31++G(d,p). 
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Figure S10. Alanine and 45 waters. Structures initially from Monte Carlo simula-

tions, then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are 

shown with representative higher energy structures. Energies (kcal/mol) are relative to 

the Z global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT 

water) 6-31++G(d,p). 

Figure S11. Alanine and 47 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S1. Alanine and 34 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S2. Alanine and 35 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S3. Alanine and 37 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S4. Alanine and 38 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S5. Alanine and 39 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S6. Alanine and 40 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S7. Alanine and 42 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S8. Alanine and 43 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S9. Alanine and 44 waters. Structures initially from Monte Carlo simulations, 

then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are shown 

with representative higher energy structures. Energies (kcal/mol) are relative to the Z 

global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT wa-

ter) 6-31++G(d,p). 
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Figure S10. Alanine and 45 waters. Structures initially from Monte Carlo simula-

tions, then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are 

shown with representative higher energy structures. Energies (kcal/mol) are relative to 

the Z global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT 

water) 6-31++G(d,p). 
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Figure S11. Alanine and 47 waters. Structures initially from Monte Carlo simula-

tions, then optimized with MP2(EFP1/DFT)6-31++G(d,p). The Z and N minima are 

shown with representative higher energy structures. Energies (kcal/mol) are relative to 

the Z global minimum as identified by PCM+MP2/(EFP1/DFT water)//MP2/(EFP1/DFT 

water) 6-31++G(d,p). 
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Abstract. Three exciting new methods that address the accurate prediction of processes 

and properties of large molecular systems are discussed. The systematic fragmentation 

method (SFM) and the fragment molecular orbital (FMO) method both decompose a 

large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in 

very different ways that are both designed to retain the high accuracy of the chosen 

quantum mechanical level of theory while greatly reducing the demands on 

computational time and resources. Each of these methods is inherently scalable and is 

therefore eminently capable of taking advantage of massively parallel computer 

hardware, while retaining the accuracy of the corresponding electronic structure method 

from which it is derived. The effective fragment potential (EFP) method is a very 

sophisticated approach for the prediction of non-bonded and intermolecular interactions. 

Therefore, the EFP method provides a way to further reduce the computational effort 
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while retaining accuracy, by treating the far field interactions in place of the full 

electronic structure method. The performance of the methods is demonstrated using 

applications to several systems, including benzene dimer, small organic species, pieces of 

the alpha helix, water, and ionic liquids. 
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1.  Introduction  

The development of quantum chemistry methods in the 1980s and 1990s 

primarily focused on performing very accurate calculations on relatively small molecular 

systems.  The desire for accurate calculations on larger molecular species led to several 

formulations employing more efficient scaling, as well as additivity of basis set 

improvement and higher levels of electron correlation.  With regard to the latter, the 

Gaussian G(n)
1
 methods and the Weizmann W(n)

2
 methods are well known, along with 

several variants.
3
 Because they ultimately rely on the use of very accurate electronic 

structure methods that scale on the order of n
7
, where n measures the size of the system of 

interest, these approaches are limited fairly small molecular species, with less than 10 

heavy (non-hydrogen) atoms.  

Simultaneous progress in the development of systematically improving atomic 

basis sets has also provided a path toward systematic increases in accuracy. It was 

recognized
4
 that basis functions optimized for atomic correlation are also capable of 

describing molecular correlation effects.  Dunning and co-workers, for example, 

introduced a series of correlation consistent basis set sets
5
 based upon these conclusions, 

capable of accurately treating electron correlation with a compact set of primitive 

Gaussian functions. These basis sets can be used in a systematic way to obtain results 

approaching the complete basis set (CBS) limit.  However, increasingly large basis sets 

must be used, and the convergence tends to be slow.  Werner has recently introduced a 

series of F12 basis sets
6
 with improved convergence to the CBS limit. The high accuracy 
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of these basis sets still comes at a significant computational cost, only feasible on 

relatively small systems.   

Chemical phenomena occur in condensed phases as well as in the gas phase, and 

many methods have been developed to treat the chemical environment
7
 and condensed 

phase phenomena.
8
 The desire to study ever larger systems led to combining quantum 

mechanics (QM) with molecular mechanics (MM).  Several such combinations, known as 

QM/MM methods,
9
 have been developed since the initial work of Warshel,

9a
 including 

multi-layer methods such as ONIOM,
10

 the Truhlar MCMM methods,
11

 and the effective 

fragment potential method (EFP)
12-27

 developed by Gordon and co-workers. The EFP 

method will be discussed in detail as a means to investigate non-bonded and 

intermolecular interactions via the automatic generation of a model potential that is 

derived from first principles.  

While hybrid methods have expanded the size of systems that are accessible to 

computations, the use of classical model potentials for the description of the environment 

can be a limiting factor, given that the electron density of the MM region and its impact 

on the QM region is not usually properly accounted for. 

 Alternative approaches to QM/MM methods are fragmentation methods, in which 

the system is broken (“fragmented”) into smaller pieces, each of which is considered 

essentially independently by a specified level of electronic structure theory.  

Fragmentation methods have the advantage that they are nearly fully quantum 

mechanical in nature, with classical approximations often used for long-range 

interactions.  Several general fragmentation methods have been proposed, including 

molecular fragmentation with conjugated caps (MFCC),
28

 the elongation method,
29

 the 
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molecular tailoring approach (MTA),
30

 the fast electron correlation method for molecular 

clusters developed by Hirata,
31

 Truhlar's electrostatically embedded many-body (EE-MB) 

expansion,
32 

multi-centered QM/QM methods,
33

 the systematic fragmentation method 

(SFM),
34-38

 and the fragment molecular orbital (FMO) method.
39-45

  The latter two 

methods, the SFM and the FMO methods, will be discussed in detail in this work.   

Instead of separating a system into two regions that are described by two very 

different levels of theory (QM and MM), fragmentation methods that divide a system into 

many smaller pieces, all of which are described by the same level of QM theory, have 

been proposed since the 1970s.
46

 By approaching a large system in this way, each smaller 

fragment can be treated using high levels of theory, providing the desired accuracy and 

an improvement in speed.  The earliest attempts
46

 constructed a set of fragments from 

common chemical groups (methyl, amino etc.) and used a selection of these fragments to 

build larger molecules.  More recent fragmentation methods
28-45 

begin with the larger 

molecule of interest and break the system into smaller fragments. 

 To increase their generality, fragmentation methods should also treat the 

environment (e.g., the remainder of the entire molecular system, a solvent) around each 

fragment in some approximate, but realistic manner.  When a molecule or a molecular 

system is fragmented into smaller pieces, each fragment no longer electronically “feels” 

the remainder of the initial system, unless one devises some way to retain the lost 

interactions.  This issue is addressed in the FMO method
39

 by performing each individual 

fragment calculation in a Coulomb “bath” represented by the electrostatic potential (ESP) 

of the entire system.  Further corrections to the FMO method are achieved by performing 

fully quantum mechanical two-fragment (dimer) and three-fragment (trimer) calculations.  
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In the SFM method
34

 the effects of other fragments are incorporated by including 

overlapping fragments in such a manner that the double counting of atoms is accounted 

for, and non-bonded interactions are captured by employing classical potentials.
12

 

Accurately capturing non-bonded effects is essential to maintaining kcal/mol accuracy 

compared to full ab initio studies. Both the FMO and SFM methods are discussed in 

more detail in following sections. In both methods, fully quantum mechanical or fully ab 

initio can refer to any of the common electronic structure methods that are available in 

most electronic structure packages. 

Traditional electronic structure methods, such as Hartree-Fock (HF), second order 

perturbation theory (MP2), and coupled cluster theory (e.g. CCSD(T)) have rapidly 

increasing resource requirements (e.g. time, memory, mass storage).  For example, the 

HF, MP2 and CCSD(T) computer time requirements scale as O(n
4
), O(n

5
) and O(n

7
) 

respectively, where n measures the size of the system, e.g., in terms of the basis set size. 

Further, CCSD(T) memory requirements scale as O(n
4
), while disk requirements are 

difficult to uniquely define. One approach to addressing the computational scaling issue 

is to develop highly parallel algorithms. The development of parallel algorithms for 

electronic structure theory has been an active research area for ~20 years, and 

considerable progress has been achieved for increasingly complex QM methods.
47

 Such 

efforts may be referred to as fine-grained parallelism, in the sense that each energy or 

derivative evaluation itself takes advantage of many cores, usually in a distributed 

manner.
48

 In many fragmentation methods each fragment calculation can be performed 

essentially independently of all the others.  This leads to a multi-level parallelism, since 

the energy of each fragment can be obtained on a separate node (coarse-grained 
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parallelism), while the fine-grained parallelism can be exploited within each node.
49

 If a 

fragmentation method is implemented to take advantage of this ability, large reductions 

in required computational resources can be achieved, facilitating calculations on, for 

example, condensed phases, proteins and surfaces.  Fragmentation approaches with 

multi-level parallelism also expand the capabilities of modest (e.g., single group or 

departmental) computer systems. 

 The present work focuses on three methods that have been designed to accurately 

treat large systems: EFP, SFM, and FMO. As noted above, the semi-classical EFP 

method has been developed to study non-bonded and intermolecular interactions. 

Benzene dimer is chosen as a representative example to illustrate the accuracy and 

efficiency of the EFP method, although several such studies have been carried out,
50

 as 

have EFP molecular dynamics simulations.
51

 Both the SFM and FMO methods have been 

designed to extend fully quantum methods to much larger molecular systems than are 

commonly accessible, by the development and implementation of judicious 

approximations. It will be shown that the EFP approach provides an effective means to 

accurately capture non-bonded interactions within the SFM framework.
39

 It will be 

illustrated that the FMO method can be used to accurately describe a series of water 

clusters and ionic liquid systems. 

2.  Effective Fragment Potential (EFP) Method 

The generalized effective fragment potential (EFP2) method
12

 is a first-principles 

based model potential for the evaluation of intermolecular forces. This is a modification 

and extension of the original EFP1 water model
13-17

 to general systems. There are five 
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EFP-EFP interaction terms in the EFP2 model potential, each of which may be thought of 

as a truncated expansion:  

Coulombic (electrostatic), induction (polarization), exchange repulsion,
 
dispersion (Van 

der Waals)
 
, and charge transfer.   

E = Ecoul + Eind + Eexrep + Edisp + Ect  (1) 

 

In EFP1, the exchange repulsion, Eexrep, and charge transfer, Ect, components are folded 

into one term that contains fitted parameters, and there is no dispersion contribution. 

EFP1 has been integrated with HF,
13

 DFT,
14

 MCSCF,
15

 singly excited configuration 

interaction (CIS),
16

 and time-dependent density functional theory (TDDFT).
17

 The EFP2-

QM interface is still under development.
18

  

 The main focus in this work is the general EFP2 method. From this point, EFP will 

imply the EFP2 method. The five terms in the EFP potential may be grouped into long 

range, (1/R)
n
 distance dependent, or short range interactions, which decay exponentially.  

The Coulombic, induction, and dispersion are long-range interactions, whereas the 

exchange repulsion and charge transfer are short range. EFP has been described in detail 

in several papers,
12-17

 therefore only a brief overview of the terms will be presented 

below. 

 The Coulomb portion of the electrostatic interaction, ECoul, is obtained using the 

Stone distributed multipolar analysis.
19

 This expansion is truncated at the octopole term. 

Atom centers and the bond midpoints are used as expansion points.  

 Induction (polarization), Eind,
 
arises from the interaction of an induced dipole on 

one fragment with the permanent dipole on another fragment, expressed in terms of the 

dipole polarizability.  Truncating at the first (dipole) term in the polarizability expansion 
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is viable, since the molecular polarizability tensor is expressed as a tensor sum of 

localized molecular orbital
20

 (LMO) polarizabilities. Therefore, the number of bonds and 

lone pairs in the system is equal to the number of polarizability points. This induction 

term is iterated to self-consistency, so it is able to capture some many body effects. 

 Because the Coulomb and induction terms discussed above, as well as the 

dispersion interaction, are treated primarily by classical approximations, the shorter range 

interactions that occur when quantum mechanical charge densities begin to overlap are 

not correctly captured. Therefore, each term is multiplied by a damping (screening) 

expression. The relative merits of several approaches to damping have recently been 

analyzed and discussed extensively.
22

 Classical Coulombic interactions become too 

repulsive at short range, and must be moderated by a screening term, as discussed in 

several previous papers.
21,22

 Conversely, the induction interaction becomes too attractive 

in the short-range regime, so a damping term is needed here as well. The unphysical 

behavior is avoided by augmenting the electrostatic multipoles with exponential damping 

functions of the form: 

    fdamp = 1 ! exp(!"R)     (2) 

where parameters " are determined at each multipole expansion point by fitting the 

multipole damped potential to reproduce the Hartree–Fock potential. Damping terms in 

the electrostatic energy are derived explicitly from the damped potential and the charge 

density. The damping procedure can be extended to higher-order electrostatic terms; that 

is, the charge– dipole, dipole–dipole, etc., interactions, and this is recommended.
21

 

Damping is also applied to the induction and dispersion energies.
21,22

 For induction, both 

exponential damping, as in Eq. (2) and Gaussian damping are effective, but the Gaussian 
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damping seems to be more generally applicable and is therefore recommended.  

 The exchange repulsion interaction between two fragments is derived as an 

expansion in the intermolecular overlap.
23

 When this overlap expansion is expressed in 

terms of frozen LMOs on each fragment, the expansion can reliably be truncated at the 

quadratic term. This term does require each EFP to carry a basis set. Since the same basis 

set is used to generate the multipoles and the molecular polarizability tensor, EFP 

calculations are basis set dependent. The smallest recommended basis set is 6-

31++G(d,p)
52

 The dependence of the computational cost of an EFP calculation on the 

basis set appears primarily in the initial generation of the EFP. Therefore, one can employ 

much larger basis sets with minimal cost. The tests presented below on the SFM method 

use the 6-311++G(3df,2p)
53 

basis set. Since the basis set is used only to calculate overlap 

integrals, the computation is very fast and quite large basis sets are realistic.  

Dispersion interactions are often expressed by an inverse R expansion,  

Edisp = CnR
!n

n

"       (3) 

where the coefficients Cn may be derived from the (imaginary) frequency dependent 

polarizabilities integrated over the entire frequency range.
24

 The first term in the 

expansion, n=6, corresponds to the induced dipole-induced dipole (Van der Waals) 

interactions. In the EFP2 method, this term is evaluated using the time-dependent HF 

method. In addition the contribution of the n=8 term is estimated. The C6 coefficients are 

derived in terms of interactions between pairs of LMOs, one each on two interacting 

molecular species, or EFPs. Because the dispersion interaction should decrease to zero at 

short range, each dispersion term is multiplied by a damping function. Tang-Toennies 

damping
25

 is frequently used to damp dispersion. However, a new approach that is based 
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on the overlap integrals between interacting fragments
22

 is free of fitted parameters and 

appears to be generally applicable. In future EFP applications, the overlap-based 

dispersion damping is recommended. 

 The charge transfer interaction is derived using a supermolecule approach, in which 

the occupied valence molecular orbitals on one fragment are allowed to interact with the 

virtual orbitals on another fragment. This interaction term leads to significant energy 

lowering in ab initio calculations on ionic or highly polar species when incomplete basis 

sets are employed. An approximate formula
26

 for the charge transfer interaction in the 

EFP2 method was derived and implemented using a second order perturbative treatment 

of the intermolecular interactions for a pair of molecules at the Hartree–Fock level of 

theory.  This approximate formula is expressed in terms of the canonical orbitals from a 

Hartree–Fock calculation of the isolated molecules and uses a multipolar expansion 

(through quadrupoles) of the molecular electrostatic potentials.  Orthonormality is 

enforced between the virtual orbitals of the other molecule and all of the orbitals of the 

considered molecule, so that the charge transfer is not contaminated with induction. This 

approximate formula has been implemented in the EFP method and gives charge transfer 

energies comparable to those obtained directly from Hartree Fock calculations.
26

 The 

analytic gradients of the charge transfer energy were also derived and implemented, 

enabling efficient geometry optimization.
27

  

 It is useful to consider the relative costs of the five EFP interaction terms. Based on 

relatively small molecules and taking the cost of the Coulomb and dispersion terms to be 

one unit, the induction interaction would cost approximately two units, exchange 

repulsion would cost about five units, and charge transfer would cost ~50 units. For 
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larger molecules, the relative costs of exchange repulsion and charge transfer will 

decrease since they will scale linearly in the large molecule limit. As always in 

computational chemistry there is a trade off between computational cost and accuracy.   

 While the EFP model is currently a rigid body model potential, analytic gradients 

for all terms have been derived and implemented, so full intermolecular geometry 

optimizations, Monte Carlo and molecular dynamics simulations
50,51

 can be performed. 

Because the method involves no empirically fitted parameters, an EFP for any system can 

be generated by a “makefp” run in the GAMESS
54 

suite of programs. The EFP potential 

generated by the makefp run includes (i) multipoles (produced by the Stone Distributed 

Multipolar Analysis) that are used in calculations of Coulomb and polarization terms; (ii) 

static polarizability tensors centered at LMOs obtained from CPHF calculations, which 

are used for calculations of the polarization energy and gradients; (iii) dynamic 

polarizability tensors centered on the LMOs that are generated generated by TDHF 

calculations and used for calculations of dispersion; (iv) the Fock matrix, basis set, and 

localized orbitals for the exchange-repulsion term, and (v) canonical orbitals for the 

charge-transfer term. This automatic generation makes possible the use of the EFP 

method for treating intermolecular and non-bonded interactions in fragmentation methods 

such as the SFM. 

2.1  The EFP Method as a Model for Non-Bonded Interactions 

 Benzene dimer is used here to illustrate the accuracy of EFP-EFP non-bonded 

interactions, with a focus on the ! –! interactions between two benzene rings. These ! –! 

interactions are largely driven by dispersion and are therefore difficult to account for 

accurately by most ab initio electronic structure methods.  Previous theoretical and 
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experimental studies suggest that there are two minima on the benzene dimer potential 

energy surface
55-62

 the perpendicular T-shaped and parallel-slipped configurations, as 

shown in Figure 1.  A sandwich structure with two parallel benzene rings, also shown in 

Figure 1, is a saddle point that connects two equivalent parallel slipped structures.  

Sherrill and co-workers calculated potential energy curves for these three structures
56,57

 

using second order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory 

with single, double and perturbative triple excitations [CCSD(T)]
63

 A variety of 

augmented correlation consistent basis sets
8
 were used with both the MP2 and CCSD(T) 

levels of theory.  Additionally, they employed symmetry-adapted perturbation theory 

(SAPT)
64

 to decompose the benzene ! –! interaction energy into electrostatic, dispersion, 

induction and exchange-repulsion components of the total interaction energy.  The 

binding energies, equilibrium separations and SAPT energy decomposition results from 

their work compare well with similar results obtained using the EFP method, as 

illustrated below.
21a

  

 For this work, the EFP for benzene was constructed with the 6-311++G(3df,2p) 

basis set,
53

 using the MP2/aug-cc-pVTZ
64 

benzene monomer geometry taken from Ref. 

57. The multipoles for benzene were generated using a numerical distributed multipolar 

analysis (DMA).
19

  The numerical DMA scheme is employed due to the instability and 

basis set dependence of the standard analytic DMA scheme, as well as the need for 

diffuse functions to properly describe the exchange-repulsion interactions within the EFP 

framework.  Higher order (up to quadrupoles) damping terms were also used to provide 

an accurate description of charge penetration through screening of the potentials.
21

 

 The EFP binding energies and corresponding inter-ring distances for the three 
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benzene dimer structures are in good agreement with the analogous ab initio values 

obtained by Sherrill and co-workers (See Table 1). Relative to the full CCSD(T)/aug-cc-

pVQZ binding energies, the EFP method over-binds the sandwich dimer by 0.4 kcal/mol 

and under-binds the T-shaped structure by 0.1 kcal/mol, while the equilibrium 

intermolecular separations are overestimated by approximately 0.1–0.2 Å.  In 

comparison, MP2 with the same basis set overestimates the binding energies by 1.7 

kcal/mol and 0.9 kcal/mol for the sandwich and T-shaped dimers, respectively, and 

underestimates the equilibrium distances by approximately 0.1–0.2 Å.  In fact, the MP2 

binding energies become successively worse compared with those predicted by CCSD(T) 

as the basis set is improved.  The EFP and CCSD(T) predicted binding energies and 

structures are in reasonable agreement with each other, whereas the agreement between 

MP2 and CCSD(T) is not as good. Table 1 summarizes the MP2, CCSD(T) and EFP total 

interaction energies of all three benzene dimer structures. A comparison of the total 

interaction energy decompositions obtained using both SAPT and the EFP method shows 

good agreement for the sandwich and T-shaped isomers (See Figures 2 and 3). 

Specifically, the error in the EFP method compared to SAPT for the dispersion, 

exchange-repulsion and polarization interactions is in the range 0.2-0.5 kcal/mol for these 

two isomers.21a  

 Highly accurate methods involve very demanding scaling of computational 

resources, such as time, memory and disk. For instance, a single point energy calculation 

in the 6-311++G(3df, 2p) basis set (660 basis functions) by MP2 requires 142 minutes of 

CPU  time on one IBM Power5 processor, whereas the analogous EFP  calculation 

requires only 0.4 seconds. The corresponding CCSD(T) calculation would be much more 
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resource demanding than MP2. Taking into account the relatively good agreement of the 

EFP method results with the CCSD(T)/aug-cc-pVQZ results described above, this 

significant reduction in total computation time comes with a minimal loss of accuracy. 

3.  The Systematic Fragmentation Method (SFM)  

 The systematic fragmentation method (SFM) is designed to permit a large 

molecular system, such as a protein, a polymer, or a surface, to be fragmented into 

smaller pieces in such a way that retains the accuracy of a full ab initio calculation at the 

same level of theory, while significantly decreasing the computational expense. By 

treating the smaller sub-systems with accurate levels of theory, the total energy and 

properties of the full system are obtained through addition and subtraction of the 

contributions from the overlapping sub-systems or “groups.”  Many body effects are 

accounted for including the nearest neighbor of each group. Non-bonded interactions 

between groups are also accounted for. In the original formulation
34

 these non-bonded 

interactions were obtained using a classical electrostatic potential.  Recently, as 

illustrated in the following paragraphs, this non-bonded description has been improved 

through the use of the EFP method, providing a more accurate representation of the non-

bonded interactions.
38 

 Within the context of the SFM, a molecule can be thought of as a collection of 

functional groups.  For example, ethanol contains three functional groups (CH3, CH2, and 

OH) according to the SFM prescription.  To fragment the system into functional groups, 

single bonds are broken. This process splits a pair of bonding electrons; each of these 

electrons is assigned to one of the two resulting fragments. In order to avoid the resulting 

radical species, a hydrogen atom is used to “cap” the dangling bonds that are created by 
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the fragmentation. The capping hydrogen points in the direction of the broken bond at a 

chemically reasonable distance.  By design, double or triple bonds are not broken, 

keeping the relevant atoms as a part of one functional group.  For example, ethanal would 

contain two functional groups (CH3 and CHO), keeping the carbon and oxygen atoms of 

the carbonyl together in one group.  After the addition of the hydrogen caps, the ethanol 

groups would be CH4, CH4, and H2O, and the ethanal groups would be CH4 and CH2O.  

To gain a more quantitative understanding of the SFM, consider the general 

example of an acyclic molecule M containing K functional groups G
i
: 

    M = G
1
G
2
G
3
...G

k
.                             (4) 

Each group G
i
 is connected by single bonds to adjacent groups G

i!1
 and G

i+1
. In order to 

separate the functional groups of M into smaller fragments, one can imagine breaking the 

G
i!1

!G
i
 single bond, then capping each new terminal atom with a hydrogen atom. This 

produces two new, smaller species, 

M
1
= G

1
G
2
G
3
...G

i!1
H

i!1
                   (5) 

 M
2
= H

i
G

i
G

i+1
...G

k
.                        (6) 

The internal geometries of M
1
 and M

2
 are preserved, except for the hydrogen atoms that 

have been used to cap the missing bond vector.  The total energy can then be written, 

without approximation, as: 

E(M ) = E(M
1
) + E(M

2
) + dE

1
,      (7) 

where dE
1
 is the correction for the differential change in the energy caused by breaking a 

bond and adding two hydrogen caps.  This process can be repeated, since bonds can be 

broken at any point along the chain, decomposing the full system into many smaller 

fragments.  As the separation between the bond breaks is increased, the accuracy of the 
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SFM will increase, since the larger fragments will give a more accurate description of the 

full system. The separation between broken bonds can be described as different “levels” 

of the SFM.  

 The SFM levels are defined as follows.
34

 

Consider the molecule M: 

 M = G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
                         (8) 

In the Level 1 SFM, two bonds separated by just one functional group are sequentially 

broken. The fragments initially created would, for example, be as follows: 

 M ! G
1
G
2
+G

2
G
3
G
4
G
5
G
6
G
7
G
8
"G

2
        (9) 

The G2 fragment is subtracted off to conserve the number of atoms. Subsequently, this 

process is repeated exhaustively on the G2G3G4G5G6G7G8 fragment until no fragment 

larger than 2 functional groups remains. In the end, the energy of M can be approximately 

decomposed into the simple sum of fragment energies for level 1 as follows:  

E
bonded

level 1(M ) = E(G1G2 ) + E(G2G3) + E(G3G4 ) + E(G4G5 ) + E(G5G6 ) + E(G6G7 ) + E G7G8( )

! E(G2 ) ! E(G3) ! E(G4 ) ! E(G5 ) ! E(G6 ) ! E(G7 )
 

(10) 

Similarly in the Level 2 SFM, bonds separated by two functional groups are sequentially 

broken with the energy of M being decomposed into the following expression: 

Elevel 2

bonded
(M ) = E(G1G2G3) + E(G2G3G4 ) + E(G3G4G5 ) + E(G4G5G6 ) + E(G5G6G7 ) + E(G6G7G8 )

! E(G2G3) ! E(G3G4 ) ! E(G4G5 ) ! E(G5G6 ) ! E(G6G7 )

(11) 

In the level 3 SFM, bonds separated by three functional groups are sequentially broken 

with the energy of M being decomposed into the following expression: 

Elevel 3

bonded
(M ) = E(G1G2G3G4 ) + E(G2G3G4G5 ) + E(G3G4G5G6 ) + E(G4G5G6G7 ) + E(G5G6G7G8 )

! E(G2G3G4 ) ! E(G3G4G5 ) ! E(G4G5G6 ) ! E(G5G6G7 )
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(12) 

It is important to note that in the limit of SFM, that is for level n, where n is the number 

of groups in the system, one would be left with the un-fragmented system. So the higher 

the SFM level employed, the larger the fragments and the closer one should get to the 

energy of the exact un-fragmented system. 

 There are some limitations of the SFM.  First, as noted earlier, the SFM is unable to 

fragment conjugation in delocalized molecular systems.  The second, less obvious, 

limitation is that the SFM is unable to fragment six member rings using level 3 since the 

capping hydrogens would approach each other too closely and would therefore cause 

unphysical repulsive interactions. To avoid this, the ring must remain intact and is 

considered to be a functional group itself. Similarly, five member rings can only be 

fragmented at level 1; four and three member rings cannot be fragmented at all. These 

exceptions are referred to as the ring repair rule. 

3.1  Non-bonded interactions 

 The simplest approach to obtain the energy of the system of interest would be to 

calculate the energies of the individual hydrogen-capped fragments and sum them 

accordingly. The result obtained from this procedure would differ greatly from the 

analogous calculation on the full molecular system. This is because the (non-bonded) 

interactions among the separated fragments are unaccounted for. These non-bonded 

interactions are naturally incorporated into the full ab initio calculation. The non-bonded 

interactions are modeled within the SFM framework by using a modified many body 

expansion;
37

 this expansion relies on the assumption that bonded interactions are much 

stronger than non-bonded ones. 
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3.2  Two-body interactions 

The interaction energy between two functional groups G
1
 and G

2
 is given by 

E
nb

(1,1)
[G

1
;G

2
] = E(G

1
G
2
) ! E(G

1
) ! E(G

2
) ,                          (13) 

where E(G
1
G
2
)  is the super-molecular energy of the two separated functional groups 

(placed in their positions in the original full molecule M) and E(G
1
),E(G

2
)  are the 

corresponding (one-body) fragment energies. The total two-body non-bonded energy of 

the system contains the energies of all possible pairs of functional groups that are not 

described by the fragmentation of the bonded system in the definition of M. That is, all 

pairs of groups G1, G2 that are not contained in any one fragment.  

3.3  Three-body interactions 

The mutual interaction of three functional groups G
1
, G

2
 and G

3
 is assumed to be 

negligible unless any two of the groups are bonded to each other. For example, if G
3
 is 

bonded directly to G
2

 then the three-body interaction energy would be: 

E
nb

(1,2)
G
1
;G

2
,G

3[ ] = E G
1
G
2
G
3( ) ! E G

1( ) ! E G
2
G
3( )

! E
nb

1,1( )
G
1
;G

2[ ]! Enb
1,1( )

G
1
;G

3[ ]           (14)

        

 

In other words, the three-body energy is simply the super-molecular energy, E(G
1
G
2
G
3
) , 

minus the one-body energies E(G
1
),E(G

2
G
3
)  and minus the two-body energies, 

E
nb

(1,1)
[G

1
;G

2
],E

nb

(1,1)
[G

1
;G

3
] . The total three-body energy consists of all combinations 

containing any group (G
1
) with any two bonded functional groups (G

2
orG

3
), so long as 

G1 is itself not present in any bonded fragment with G
2
 or G

3
. This general trend can be 

extended to four body interactions and beyond; however for the purposes of this work 

only three-body terms will be treated. Note that to employ the SFM method, one only 
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needs to specify the desired Level. The fragmentation then follows without further 

specification. 

 The total SFM energy of a system is simply the addition of the bonded and non-

bonded energies, 

E
SFM

total
= E

bonded
+ E

non-bonded
,                     (15) 

where Enon-bonded  includes all terms up to nth order from the modified many-body 

approximation. For example, calculations employing 3rd order many body non-bonded 

energies would include the 2nd order many body non-bonded energies as well. 

3.4  SFM and EFP 

SFM molecular energy calculations corresponding to bonded level 3 including 

many body non-bonded interactions apparently provide, on average, the best balance 

between accuracy and computational effort.35 Although the non-bonded approximation is 

important for reliability, it also hinders computational performance by significantly 

increasing the number of ab initio terms. For example, moderately sized proteins (~3500 

residues) have on the order of 106 non-bonded interactions. Because there are so many 

non-bonded terms, these terms can dominate the calculation. It is therefore advantageous 

to employ approximate methods for those non-bonded interactions that are sufficiently 

distant that classical approximations might be valid. The simplest approach, using just 

electrostatic interactions, were used in the original SFM implementation.35 A more 

sophisticated approach, using effective fragment potentials (EFP), is described here38. 

Compared to electrostatics, intermediate range (2.7-4.5Å) EFP interaction energies agree 

better with ab initio methods. This increases the number of non-bonded terms that can be 

calculated with model potentials.  
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The determination of whether a non-bonded term is treated with EFP or ab initio 

methods is based on a user-defined cutoff related to the nearest atom-atom distance 

between fragments. The short-range (< 2.7Å) non-bonded terms use ab initio methods, 

while long-range (!2.7Å) ones use EFP. The original electrostatic approach38 used a 

cutoff of 4.5Å. This shortened EFP cutoff comparatively reduces the number of ab initio 

non-bonded terms, thereby decreasing the computational expense.  

Previously, Collins and Deev tested the SFM by calculating the isomerization 

energies of a set of organic molecules (12-44 heavy atoms) obtained from the Cambridge 

Structural Database.65 A subset of this set of isomerization energies is examined here.  

The energies that are obtained by employing the EFP/ab initio non-bonded approach are 

compared with both the fully ab initio energies (no SFM) and to the SFM in which all 

non-bonded terms are calculated with the same ab initio method that is used for the 

bonded terms. The ab initio calculations here employ both the Hartree-Fock (HF) and 

second order perturbation theory (MP2) levels with the 6-31G(d,p) basis set. Additional 

SFM tests are presented for a small set of alpha helices using the 6-31++G(d,p) basis set.  

The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non-

bonded interactions, since this basis set has been shown to produce reliable results and 

since the EFP basis set dependence does not significantly affect the computational cost 

relative to ab initio calculations. All of the SFM calculations presented here correspond 

to bonding level 3, including up to 3rd order many body non-bonded interactions.  All 

calculations are performed with the GAMESS54 electronic structure code. 

 Given in Table 2 are the errors in the isomerization energies. The corresponding 

structures are depicted in Scheme 1. It is evident that the two methods for treating the 
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SFM non-bonded energy (EFP/ab initio and ab initio only) are in reasonable agreement 

with the fully ab initio (non SFM) energies, as the mean absolute error (MAE) in all 

cases is no more than 2.5 kcal/mol. Addition of the 3
rd

 order non-bonded terms does not 

result in any improvement to the MAE. Interestingly, the MAE for the combined EFP/ab 

intio approach for the non-bonded terms are slightly smaller  (~0.1-0.5 kcal/mol) than 

those obtained when the non-bonded terms are evaluated with the ab initio method (HF 

or MP2). For the 21 molecules of interest here, as also noted by Collins and Deev
35

, no 

improvement in the net CPU time is observed since the molecules themselves are small. 

Improvements in CPU timings are observed for larger molecular systems (>100 atoms), 

as discussed below. 

SFM isomer energies for the larger model alpha helices (ranging from 125-170 

atoms) are shown in Table 3, with the corresponding structures presented in Scheme 2.  

For these systems, adding the higher order non-bonded terms does improve the SFM 

performance. The MAE improves by ~1 kcal/mol when the 3
rd

 order non-bonded terms 

are included. Here again, the SFM errors obtained when using the EFP/ab initio non-

bonded energies are similar (~1 kcal/mol smaller) to those obtained using only ab inito 

non-bonded terms. Table 4 compares the CPU times for using the EFP method for non-

bonded terms with those required for the ab initio-only SFM. The time needed to 

generate the EFP terms is also listed. This time becomes significant when the 3
rd

 order 

many body terms are included. Further, since the EFP generation requires only 

calculations at the Hartree-Fock level of theory, the contribution of the EFP generation to 

the overall computation time will greatly decrease in importance when more accurate 

electronic structure methods are used. 
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 Nonetheless, as shown in Table 4, employing EFP to treat a portion of the SFM 

3rd order non-bonded terms results in an overall decrease in CPU time by roughly a factor 

of two. Including only the 2nd order non-bonded EFP/ab initio terms gives energies in 

good agreement with the full un-fragmented energies (Table 3: MAE = 2.6 kcal/mol), but 

the gain in computational efficiency is small, ~5-15% less CPU time. The advantage of 

using the EFP/ab initio approach is clearly seen in Table 5, where the number of non-

bonded terms that must be computed ab initio is compared for the EFP/ab initio and the 

electrostatic/ab initio methods. Since the EFP method is more effective at capturing 

interaction energies than electrostatics at close range, the EFP non-bonded cutoff can be 

set to the shorter distance of 2.7Å, instead of 4.5Å. This shorter cutoff value reduces the 

number of expensive ab initio non-bonded terms by up to 85-90%, while still retaining 

good accuracy. This increase in efficiency will be especially important when high levels 

of theory, such as MP2 or coupled cluster methods, are employed to treat large molecular 

systems.  A major advantage of the SFM (and other fragment-like methods) is that it 

enables very accurate calculations on large molecular systems that would otherwise be 

impossible. As noted above, since the EFP generation requires only Hartree-Fock level 

calculations, the contribution of the EFP generation to the overall computation time will 

greatly decrease in importance when more accurate electronic structure methods are used. 

4.  The Fragment Molecular Orbital (FMO) Method 

The FMO method39-45 relies upon the assumption that electron exchange and 

charge transfer are largely local phenomena in chemical systems.  By breaking a system 

into fragments and treating the long-range interactions in a system using only a Coulomb 

operator, there are significant reductions in computational expense.  In addition to this 
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initial reduction in computational cost, the FMO method is further enhanced with the 

generalized distributed data interface (GDDI).
49

 The GDDI uses a two-level 

parallelization scheme, assigning individual fragment calculations to different groups, 

each group performing its fragment calculation in parallel. The FMO method has also 

been interfaced with the polarizable continuum model (PCM)
66

 and the effective 

fragment potential (EFP)
84

 for the inclusion of solvent effects.  There is also a multi-layer 

FMO (MFMO) implementation
67

 that allows for the use of different wavefunction types 

for different fragments.  The combination of the long-range approximations to the system 

and the GDDI parallelization helps to facilitate the treatment of large molecular 

systems.
45,68 

 

Creating fragments in the FMO method involves breaking bonds electrostatically, 

assigning two electrons of a covalent bond to one fragment and none to the other, with 

the fragment choice relying on the chemical intuition of the user.  To avoid the charged 

species created by such a fragmentation scheme, a proton from the electron deficient 

fragment is reassigned to the electron rich species, creating two neutral fragments 

(indicated by the “1” and “5” in Figure 4).  The “1” and “5” in the figure both carry sp
3
 

hybrid orbitals, to maintain the carbon character. The individual fragment (monomer) 

calculations are performed in the presence of a Coulomb “bath” that represents the 

electrostatic potential (ESP) of the system (Figure 5). As described below, the Coulomb 

bath is treated by a variety of approximate methods that depend on the distance that 

separates monomers, dimers, trimers, etc. Significant improvements
69,70 

to this 

description of the FMO method are obtained by including many-body effects.  Two-body 

effects are incorporated by explicitly including all pairs of fragments (monomers). These 
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pairs are called dimers, and the FMO method that includes them is called FMO2. 

Likewise, three-body effects are embodied in the FMO3 version of the method, in which 

all trimers are explicitly included. In FMO2 (FMO3) all dimers (trimers) are treated with 

the chosen level of electronic structure theory. 

 

To calculate the energy of a system within the FMO method, first the initial 

electron density distribution is calculated for each monomer in the Coulomb bath of the 

system.  The monomer Fock operators are constructed and the energy of each monomer 

is calculated.  Each of the monomer energies is iterated to self-consistency in this 

manner, leading to the convergence of the ESP.   

The total energy of a chemical system, within the FMO approximation, can be written as;  

E = E
I
+

I

N

! (E
IJ
"

I >J

N

! E
I
" E

J
)  

+ {(E
IJK

!
I >J >K

N

" E
I
! E

J
! E

K
) ! (E

IJ
! E

I
! E

J
)           (10) 

! (E
JK
! E

J
! E

K
) ! (E

KI
! E

K
! E

I
)} + ...  

where monomer (I), dimer (IJ) and trimer (IJK) energies are obtained using the standard 

SCF method. Despite the seeming simplicity of Eq. (10), the FMO method encapsulates 

the deeper ideas of properly handing many-body effects, as clarified in the diagrammatic 

treatment
69

 and the Green’s function formalism.
73

 This is a very important distinction 

between the FMO and other methods. The Fock equation; 

 
!F
x
C

x
= S

x
C

x
!!
x     x = I , IJ, IJK                                                                            (11) 

 
!F
x
= !H

x
+G

x
                                                                                                       (12) 
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is modified from the standard form with the addition of a term, Vµ!

x , that represents the 

ESP to the one-electron Hamiltonian  !H
x
. 

 

!Hµ!
x
= Hµ!

x
+Vµ!

x
+ B µ "

i

h

i

# "
i

h !                                                                 (13) 

The modified Hamiltonian also contains the projection operator, B µ !
i

h

i

" !
i

h # , 

needed for division of basis functions along the fractioned bonds, where B is a constant 

chosen to be sufficiently large to remove the corresponding orbitals out of variational 

space (normally B=10
6
 a.u.).  

The ESP of the system takes the form; 

Vµ!

x
= (

K (" x )

# uµ!

K
+ vµ!

K
)                                                                                           (14) 

uµ!

K
= µ ("Z

A
/ | r " r

A
|)

A#K

$ !                                                                           (15) 

vµ!
K
= D"#

K

"#$K

% (µ! | "# )                                                                                       (16) 

where the first term uµ!

K  is the nuclear attraction contribution and the second term vµ!
K  is 

the two-electron contribution, both of which are calculated for each of the surrounding 

monomers K with electron density D
K
. 

4.1  FMO Approximations  

The formulation of the energy described above has limitations
44,70

,  such as the 

increasing cost of the two-electron term in the ESP.  To reduce this cost, different 

approximations can be used to treat the ESP by creating a cut-off value Rapp.  Outside this 

cut-off the two-electron terms of the ESP can be treated in a more approximate way.  

However, the foregoing energy formulation loses some accuracy with such 
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approximations, because the balance among the approximations in different FMO terms 

may be lost.  For example, if there are three monomers I, J and L with some distance 

based approximation (Rapp) applied, and the relative distances are as illustrated in Figure 

6, then the electrostatic interaction of monomers I and L would be treated using the 

approximation, while the interaction of monomers J and L would be treated with the full 

ESP.  However, there would be an interaction of dimer IJ with monomer L without any 

approximations, (because L is close to IJ and J, but far from I).  This causes a loss of 

balance among some of the dimer energy terms in the expression 

(E
IJ
!

I >J

N

" E
I
! E

J
)                                                                                                   (17) 

 

for those dimers IJ in which some ESP contributions (i.e., those for fragment L) included 

in EI are treated using the approximation, but in others they are not.  There can be a great 

many dimer contributions to the energy in a single calculation, causing significant loss of 

accuracy in the energy of the full system.   

The issue described above requires a reformulation of the energy that is 

equivalent to Eq. (10), but more accurate if approximations to the ESP are used
44

. For 

FMO2,   

E
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) + Tr($D

IJ
V

IJ
)

I >J

"                                                        (18) 

 

A similar expression has been derived for FMO3.
78

 

The new energy terms E!x  are defined as the internal energies of the monomers and 

dimers with the ESP contributions subtracted out;  
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!E
x
= E

x
" Tr(D

x
V

x
)      x = I , J, IJ                                                                        (19) 

 

This is accomplished by contracting V
x
 with the electron density D

x
.  !D

x
 is the 

difference density matrix, defined as 
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where d
II
, d

IJ
, d

JI
 and d

JJ
 are blocks of D

IJ
, and d

I
 (d

J
) is simply equal to D

I
 (D

J
). This 

formulation makes it possible to calculate the total energy explicitly from only the dimer 

ESP V
IJ
.  By subtracting the monomer and dimer ESPs in the energy expression, 

approximations can be applied to the monomers and dimers separately.  The dimer ESP 

then directly contributes to the total energy, while the monomer ESP determines the 

monomer electron densities, only contributing to the total energy indirectly.   

Two different levels of approximation are currently used in the FMO method, 

enabled by equation (18).  For intermediate distances the Mulliken approximation
71

 to the 

two-electron integrals is used.  Equation (16) can then be rewritten as; 

vµ!
K
" (D

K
S
K
)##

#$K

% (µ! | ##)                                                                                 (21) 

 

This approximation reduces the computational cost of the two-electron integrals by a 

factor of NB (number of basis functions).   

The fractional point charge approximation, using the Mulliken atomic populations 

of the monomers, is used for long distances. The two-electron term of equation (16) is 

then simplified as; 

vµ!
K
" µ (Q

A
/ | r # r

A
|)

A$K

% !                                                                               (22) 

 

reducing the computational cost of the two-electron integrals by another factor of NB. 
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Inter-fragment interactions have a similar approximation that evaluates the 

electrostatic contribution to the energy using the monomer densities for far separated 

dimers, instead of calculating the dimer density itself.  This contribution is added to the 

dimer energy as 

!E
IJ
" !E

I
+ !E

J
+ Tr(D

I
u
1, I (J )

) + Tr(D
J
u
1,J ( I )

) + Dµ#
I
D$%

J
(

$%&J

'
µ#&I

' µ# | $% )       (23) 

where u
1, I (J )

and u
1,J ( I )

 are one-electron Coulomb potentials of the force exerted by 

fragment J on fragment I, and fragment I on fragment J, respectively. 

Other approximations of the same nature are implemented for correlated dimers 

and trimers, where the corresponding corrections for far separated pairs and triples of 

fragments are neglected.
72,74

. Formal definitions and descriptions of the trimer 

interactions and cut-offs used in FMO3 have been described previously
69,70

 and will not 

be discussed here.  All of these approximations are based on a distance definition Rapp, 

defined as the minimum distance between atoms in n-mer I and monomer J divided by 

the sum of their van der Waals radii.   

There have been several new developments in the FMO theory that cannot be 

discussed in detail here. Nonetheless, it is useful to mention a few of them briefly. As an 

alternative to the original bond fragmentation scheme, in which the electron density 

describing the detached bonds is variationally optimized, a new scheme has been 

suggested in which this density is obtained for a model system and is kept frozen in 

fragment calculations
75

. This new scheme has been shown to work well for covalent 

crystals such as zeolites. The FMO method has also recently been implemented for the 

study of excited states
76

, using multi-configurational self-consistent field (MCSCF) 
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theory, configuration interaction (CI), and time-dependent density functional theory 

(TDDFT). 

4.2  FMO2 and FMO3 Calculations on (H2O)32 Clusters 

The unusual characteristics of liquid water make it both very important to 

chemical processes and particularly difficult to model accurately.  The structure of small 

(H2O)n (n=6 through 20) clusters have recently been determined
83

 using coupled cluster 

theory; however, the ability to model water clusters larger than this at the same level of 

theory is nearly impossible.  The FMO method provides a way to model much larger 

water clusters at high levels of theory such as CCSD(T), while keeping the computational 

cost manageable. 

In the present work, calculations of the energies of (H2O)32 water clusters are 

reported, using fully ab initio Møller-Plesset second order perturbation theory (MP2) as 

well as the MP2 implementation of the FMO method
72,77

. For these clusters a fragment 

(monomer) is defined as one water molecule for both FMO2 and FMO3 calculations.  

Initial structures were obtained from EFP Monte Carlo/Simulated Annealing (MC/SA) 

simulations followed by EFP optimizations of a representative set of structures.  The 

MC/SA method with local minimization was used to sample the configuration space.  For 

each global minimum found, the number of structures sampled was on the order of 

500,000 – 1,100,000.  The number of steps taken for each temperature was varied (100, 

500, 1000, 10,000), along with changing the number of steps between local 

minimizations (10, 100, 1,000). The number of fragments moved per step was also varied 

between one and five. The starting temperature for the simulated annealing varied from 

500 to 20,000 K and the final temperature was kept at 300 K.  This selection of isomers 



www.manaraa.com

 

 

168 

(the lowest energy structure is shown in Figure 7) was used to investigate the accuracy of 

the FMO method by comparing both absolute and relative energies.    

Average errors for the FMO2-MP2 calculations (Table 6) using the 6-31++G(d,p) 

basis set are very consistent, around 12 kcal/mol.  The FMO3-MP2 results illustrate the 

importance of three-body interactions in water clusters,
78,79

 again with very consistent 

errors of ~2-3 kcal/mol (Table 6).  Comparing results between basis sets in Table 6, when 

the basis set size is increased to 6-311++G(3df,2p), the FMO2 errors double to ~24-28 

kcal/mol, while the FMO3 errors are cut in half to ~1 kcal/mol.  This increase in errors 

with an increased basis set size for the two-body FMO method could be due to an 

increased importance of three-body contributions when the better basis set is used.  The 

larger basis set also provides a better description of three-body interactions, making the 

lack of these interactions in FMO2 even more detrimental. 

Despite the large absolute errors present in the FMO2 description of water 

clusters, the relative energetics of the different isomers is captured quite well.  On 

average, the FMO2 relative energies are in agreement with full ab initio results to within 

~1-2 kcal/mol with both basis sets, shown in Table 7.  The error increases for FMO2 as 

the relative energy of the isomers increases, showing an increased importance of three 

body contributions with higher energy isomers.  For both basis sets, the FMO3 results are 

within ~0.5 kcal/mol or less for all isomers as shown in Table 7, effectively removing the 

error from the two body description used in FMO2.   

4.3  The FMO Method Applied to Ionic Liquids 

 Previous studies of ionic liquids
80,81,82

  have focused on the decomposition of ion 

pairs (Figure 8), providing insight into the chemistry of their ignition as high energy 



www.manaraa.com

 

 

169 

fuels.  The focus of this paper, however, will be to accurately describe larger systems 

beyond single anion-cation pairs.  Recent work by Li et. al.
83

 has provided an accurate 

structure of two ion pairs (two cations and two anions), providing a greater understanding 

of the molecular structure and intermolecular interactions.  The same system will be 

modeled here, along with systems of three ion pairs to illustrate the effectiveness of the 

FMO method in accurately describing complex molecular clusters, with the goal of 

modeling much larger systems in the future. 

 Two ionic liquid systems, 1-H,4-H-1,2,4-triazolium dinitramide and 1-amino, 4-

H-1,2,4-triazolium dinitramide (Figure 8), were studied using both ab initio Møller-

Plesset second order perturbation theory (MP2) and the MP2 implementation of the FMO 

method
72,77

 with one ion chosen as an FMO fragment or monomer.  Structures composed 

of two cations and two anions (tetramers), shown in Figures 9 and 11, and larger clusters 

of three cations and three anions (hexamers), shown in Figures 10 and 12, were optimized 

at the MP2/6-31+G(d) level of theory.  FMO2-MP2 and FMO3-MP2 single point energy 

calculations were then performed for comparison with the fully ab initio results. Mulliken 

charges on each cation and anion were also compared to ensure that the pronounced 

charge separation present in ionic liquids
80,81,82

 is captured using the FMO method.   

  Comparing the energies from FMO2 and FMO3, it can be seen immediately that 

the FMO method captures the total energy very well, within 2 kcal/mol in the worst case 

(Table 8).  For the tetramers, both FMO2 and FMO3 are in good agreement; the FMO2 

errors are less than 1 kcal/mol relative to the fully ab initio results.  For the hexamers, the 

FMO2 errors are less than 2 kcal/mol, illustrating that FMO3 is not required to achieve 

the desired level of accuracy for these particular ionic liquid systems.  Whether this trend 
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persists as system size grows beyond three ion pairs, or for other ion pairs, must be tested 

further.  

 As shown in previous studies
80,81,82

, ionic liquid ion pairs have a definite 

separation of charge (approximately +1 on the cations, -1 on the anions) at equilibrium 

geometries.  This charge separation is also observed for tetramers, as shown in Table 2, 

and the charge separation between cations and anions is still present up to hexamer 

structures.  FMO2 captures the qualitative charge separation quite well, however, the 

magnitude of charge present on both cations and anions is slightly overestimated by 

FMO2 for both tetramer structures (Table 9).  However as the system size increases to 

three ion pairs, the difference between FMO2, FMO3 and ab initio results becomes 

minimal.  Future work using larger basis sets will help determine if FMO2 is accurate 

enough to describe larger ionic liquid clusters or if FMO3 will be required.   

 Another consideration for larger molecular systems is the computer time required.  

To illustrate the overall effectiveness of the FMO method in both providing accurate 

results and reducing computational requirements, timings were performed for the ionic 

liquid systems described above.  Due to the fact that FMO2 is in good agreement with the 

ab initio results, only timings for FMO2 will be shown.  However, it is noted here that 

because the tetramers and hexamers examined here are small, the FMO3 timings for these 

systems do no exhibit any time savings relative to the full MP2 calculations. The benefit 

of using FMO3 is only seen with larger systems
73

. 

 Timings were performed on a Cray XT4 supercomputer using AMD Opeteron64 

processors running at 2.1 GHz, located at the U.S. Army Engineer Research and 

Development Center (ERDC) in Vicksburg, Mississippi.  Single point Møller-Plesset 
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second order perturbation theory (MP2) energy calculations were performed using 8, 16 

and 32 processors with both FMO2 and MP2 using the 6-31+G(d) basis set.  As shown in 

Table 10, FMO2 requires approximately half the computer time of a full MP2 calculation 

on the tetramers.  With the increase in available processors, the overall time requirements 

are cut in half for both FMO2 and MP2, showing good scalability for both methods.  

With an increase in system size from ionic liquid tetramers to hexamers, the computer 

time required for a fully ab initio calculation increases more than 6 fold, while the FMO2 

requirement only doubles. So, the FMO2 cost savings relative to full MP2 is much 

greater than that observed for the tetramers. Again, scalability for both methods is very 

good for the hexamers, cutting the computational time in half when doubling the number 

of available CPUs.  

It is apparent that as the system size increases to larger ionic liquid clusters, or as 

the basis set size increases (or both) the computational requirements for a fully ab initio 

calculation will rapidly and increasingly exceed those for FMO2.  It may be that as the 

system size increases, the importance of three-body contributions to the interaction 

energy will also increase, requiring the use of FMO3.  Future work will determine the 

importance of three-body terms in ionic liquid systems, as well as the ability of the FMO 

method to describe larger molecular clusters.   

5.  Summary and Conclusions 

Obtaining chemical accuracy (1 kcal/mol) using model chemistries has been a 

major focus of quantum chemistry research for the last quarter of a century. The desire to 

study larger systems in order to capture novel chemical phenomena (e.g. solvent effects, 

surface science, enzyme and heterogeneous catalysis and polymerization phenomena), 
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including the kinetics and dynamics of such processes, often requires very accurate 

predictions of potential energy surfaces for subsequent predictions to be even 

qualitatively correct. The computational effort of traditional methods such as Hartree-

Fock (HF), density functional theory (DFT), 2
nd

 order perturbation theory (MP2), and 

coupled cluster theory with perturbative triples (CCSD(T)) scale as O(n
4
), O(n

4
), O(n

5
), 

and O(n
7
), respectively, where n represents the size of the system, e.g., the size of the 

basis set. In practice, this limits the sizes of systems that can be studied with HF/DFT, 

MP2 and CCSD(T) to approximately a few hundred, one hundred, and twenty non-

hydrogen atoms, respectively. By developing highly parallel algorithms, the goal of using 

sophisticated electronic structure methods to investigate large molecular problems 

becomes more feasible, especially if one has access to massively parallel computing 

hardware.  However, scalability beyond hundreds to a few thousand processors is 

generally a serious bottleneck for correlated electronic structure methods. Consequently, 

parallel computing is not the sole solution to enabling accurate calculations on extended 

molecular systems; other approaches are needed. If one is interested in performing long-

time simulations at reliable levels of theory, the situation is only exacerbated.  

Pioneering work by Warshel
9a

 and others
9
 introduced hybrid methods that employ 

both quantum mechanics (QM) and molecular mechanics (MM), leading to the now 

ubiquitous QM/MM approach. Importantly, the QM/MM approach is quite general, so it 

can be employed with any level of QM, including the fragmentation methods that have 

been the primary focus of the present work.  Modern fragmentation methods have their 

roots in ideas from Murrel (1955)
46a

 and Christoffersen (1971).
46b

  More recently 

developed fragmentation methods, such as the fragment molecular orbital (FMO) method 
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and the systematic fragmentation method (SFM), are now becoming capable of achieving 

chemical accuracy for extended molecular systems. 

The effective fragment potential (EFP)
12

 method has been developed to model 

non-bonded, intermolecular interactions. There are two related implementation of the 

EFP method: The original method, called EFP1, was developed specifically to study 

aqueous solvent effects on chemical processes.  The more recently developed EFP2 

method is completely general, in the sense that an EFP2 contains no empirically fitted 

parameters. The Coulomb and induction terms are common to EFP1 and EFP2, and the 

remaining terms in EFP2 are derived from first principles. Once an EFP2 has been built 

for a specific system (accomplished by a straightforward GAMESS run), the evaluation 

of EFP-EFP interactions requires a small fraction of the computational cost compared to 

the fully QM calculation. The EFP computational effort scales in the range of quadratic 

to linear with an increasing number of fragments. EFP1/MP2 achieves an accuracy of ~1 

kcal/mol for the relative energies of six-water clusters compared to CCSD(T)/aug-cc-

pVTZ.
47b

 For benzene dimer binding energies, EFP2 achieves an accuracy of ~1 kcal/mol 

relative to CCSD(T)/aug-cc-pVTZ results.  The EFP1 method has been interfaced with 

the QM methods HF,
13

 DFT,
14

 MCSCF,
15

 singly excited configuration interaction 

(CIS),
16

 and time-dependent density functional theory (TDDFT)
17

 within the GAMESS 

suite, so EFP1 is a fully QM/MM method. The EFP2-QM integration is currently under 

development.
18

 These new features will greatly expand the utility of the method, by 

enabling, for example, the exploration of solvent effects for a wide variety of problems in 

organic and inorganic chemistry. 

The SFM fragments a molecule based on the number of single bonds in each 
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fragment, while considering the environmental effects of distant parts of the system via a 

many body expansion of the interactions not captured by the internal energies of the 

fragments.  This framework allows the SFM to be widely applicable with a simple user 

interface, which has been integrated into the GAMESS suite. The SFM has been used to 

study small and medium sized organic molecules
35

, as well as crystals.
37

 In this paper, it 

was demonstrated that the SFM, when using EFPs for the non-bonded interactions, has a 

mean averaged error of 1.8 kcal/mol for several !-helical isomers at the HF/6-

31++G(d,p) level of theory. The SFM is formally independent of the ab initio methods 

used in calculations of the fragments, thereby facilitating highly accurate energies and 

relative energies with nearly linear scaling as the size of the system is increased. 

Therefore, the SFM can be used in concert with any available electronic structure 

method, such as MP2 and CCSD(T), and applied to much larger molecular systems that 

might otherwise be accessible. The time requirements for the EFP part of a SFM 

calculation, when EFPs are used for the non-bonded interactions, are determined by the 

cost of an initial HF single point calculation that is employed to generate the potential. 

Therefore, the EFP fraction of the overall computer time requirements decreases rapidly 

as the level of ab initio theory increases (e.g., from HF to MP2 to CCSD(T)). 

The FMO method treats each fragment (monomer, dimer, etc.) in a Coulomb bath 

that represents the remainder of the full system. The energy of each monomer is iterated 

to self-consistency within this Coulomb bath. The FMO method is very flexible with 

regard to the definition of fragments (i.e., monomers), the assignments of distance cutoff 

parameters, and the level of many-body effects (i.e., dimer, trimer, etc.) to be included in 

the calculation. Combined with the avoidance of capping procedures, this facilitates the 



www.manaraa.com

 

 

175 

study of a wide variety of systems including clusters, zeolites, and proteins, and the 

ability to balance accuracy and computational efficiency. Within GAMESS, the FMO 

method has been interfaced with the polarizable continuum method and the EFP method 

for studies of solvent effects on chemical processes. Each monomer in a molecular 

system of interest can be treated by most traditional electronic structure methods. In the 

present work, the FMO method has been shown to achieve accuracy within 1 kcal/mol 

for both ionic liquid systems and water clusters. 

 The EFP method provides a systematically improvable description of non-bonded 

interactions, while the FMO method and the SFM facilitate the description of large 

molecular systems with high levels of accuracy. The interface of the two fragmentation 

methods for internal and near-field ab initio calculations with the EFP method for non-

bonded moderate and far-field interactions and for solvent effects provides a powerful 

and computationally effective combination. Additionally, the ability of these methods to 

take advantage of the standard theoretical electronic structure framework allows their 

capabilities to move forward with new advances in electron correlation, wavefunction 

description and basis set development for large molecular systems. The primary 

limitation of both the SFM and FMO methods is that they are primarily applicable to 

“localized” systems. That is, these methods rely on the ability to decompose a large 

species into smaller fragments that are reasonably self-contained. So, the methods would 

not work well for highly delocalized systems, such as a conducting metal, graphite, or a 

linear polyene.  

 The SFM and FMO methods have not yet been broadly applied to the study of 

chemical reactions. Since analytic gradients are available for both methods, the 
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exploration of potential energy surfaces for chemical reaction of complex systems using 

these methods is a logical next step. 

 An important advantage of the FMO and SFM approaches described here is their 

ability to take great advantage of massively parallel computers. Because the energy of 

each fragment can be computed essentially independently, each fragment calculation can 

be determined on a separate compute node. Further, because most of the algorithms used 

in GAMESS for electronic structure functionalities are themselves highly scalable, the 

fragment-based calculations can take advantage of multi-level parallelism. This 

capability, which is enhanced by middleware developments like the generalized 

distributed data interface (GDDI), bodes well for the implementation of algorithms for 

“petascale” computers that are expected to come on line within the next 2-3 years.  

Simultaneous advancements in new approaches like the fragmentation methods discussed 

here, novel parallel algorithms, ab initio theory, and novel approaches in hardware 

development are all required if one is to successfully address the grand challenge 

problems in the chemical sciences, biological sciences and materials science and 

engineering. 
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Table 1. Binding energies (kcal/mol) and equilibrium separations R (Å) of benzene 
dimer structures.  

Sandwich  T-Shaped  Parallel-displaced 
Method Basis set 

R Energy  R Energy  R1 R2 Energy 

MP2a aug-cc-pVDZb 3.8 -2.83  5.0 -3.00  3.4 1.6 -4.12 

 aug-cc-pVTZ 3.7 -3.25  4.9 -3.44  3.4 1.6 -4.65 

 aug-cc-pVQZb 3.7 -3.35  4.9 -3.48  3.4 1.6 -4.73 

CCSD(T)a aug-cc-pVDZb 4.0 -1.33  5.1 -2.24  3.6 1.8 -2.22 

 aug-cc-pVQZb 3.9 -1.70  5.0 -2.61  3.6 1.6 -2.63 

EFP 6-311++G(3df,2p) 4.0 -2.11  5.2 -2.50  3.8 1.2 -2.34 

a Reference 56  
b Basis sets as described in Ref. 56 
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Table 2.  Mean absolute errors of isomerization energies (kcal/mol) calculated by SFM, 
relative to fully ab initio (no SFM) energies. The non-bonded terms use the combined 
EFP/ab initio approximation (cutoff !2.7Å). Given in parentheses is SFM with the non-
bonded term fully ab initio (no approximation). 

  2nd Order Many Body 3rd Order Many Body 
 6-31G(d,p) 6-31G(d,p) 

Isomer HF kcal/mol MP2 kcal/mol HF kcal/mol MP2 kcal/mol 

ODETAS-AHALUQ 0.0   (0.5) 0.6   (0.1) 0.6   (0.2) 0.4   (0.3) 

ODETAS01-AHALUQ 0.5   (1.2) 0.0   (0.7) 0.9   (0.4) 0.0   (0.1) 

BAZGEP-BAZGIT 0.4   (0.6) 0.4   (0.2) 0.2   (0.5) 0.3   (0.3) 

BELDIF-NOTGAE 2.6   (2.6) 4.6   (5.1) 2.6   (2.4) 4.6   (4.9) 

FDOURD01-BOFWIC 0.5   (0.7) 0.2   (0.9) 0.1   (0.2) 0.5   (1.6) 

CONBAI-FDMUPD10 0.7   (0.3) 1.1   (2.4) 3.5   (4.2) 2.9   (5.4) 

IDUFES-IDUFAO 1.6   (2.1) 3.1   (5.3) 0.7   (0.2) 1.8   (1.1) 

LEDRAN-LEDRER 1.0   (0.8) 1.0   (2.6) 1.7   (1.9) 1.6   (2.8) 

LEDRIV-LEDRER 1.9   (1.5) 0.3   (0.0) 0.5   (0.4) 1.4   (1.0) 

TAXYIA-MOGQOO 1.3   (0.4) 11.1 (8.4) 0.0   (1.2) 9.7   (6.8) 

TAXYOG-MOGQOO 1.6   (2.1) 1.1   (3.7) 2.0   (2.6) 1.5   (4.2) 

WINXIA-XEXXIH 0.3   (0.3) 0.1   (0.1) 0.3   (0.3) 0.1   (0.1) 

     

MAE 1.0   (1.1) 2.0   (2.5) 1.1   (1.2) 2.1   (2.4) 
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Table 3. Absolute errors in isomerization energies (kcal/mol) at HF/6-31++G(d,p) for 
alpha helixes, relative to fully ab initio (no SFM). The non-bonded terms use the 
combined EFP/ab initio approximation (cutoff !2.7Å) or ab initio (given in parentheses).  

  2nd Order 3rd Order 
 HF/6-31++G(d,p) HF/6-31++G(d,p) 

Isomer HF kcal/mol HF kcal/mol 

MAQWUW_1-MAQWUW_2 2.7  (1.1) 1.7  (0.2) 

WUYCUO-WUYDAV 5.7  (5.8) 3.9  (6.1) 

WUYCUO-WUYDEX 0.9  (2.5) 0.1  (3.1) 

YETPES_1-YETPES_2 1.1  (5.3) 0.2  (1.0) 

     

MAE 2.6  (3.7) 1.5  (2.6) 
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Table 4. Net CPU times (minutes) for the SFM HF/6-31++G(d,p) on a single core of a 

Xeon 2.66Ghz quad core Cloverton node, with 16 GB  RAM. Net times include the time 

needed for EFP generation. The EFP generation time is given in parentheses.  The total 

number of non-bonded terms is also listed. The heading EFP indicates the use of EFP for 

the non-bonded terms. 

 2
nd

 Oder Non-bonded 3
rd

 Order Non-bonded 

Isomer 

# non-bonded 

terms EFP  No EFP 

# non-bonded 

terms EFP No EFP 

MAQWUW_1 1113 128  (25) 144 3159 329  (191) 559 

MAQWUW_2 1113 128  (26) 140 3155 333  (194) 562 

WUYCUO 1752 155  (33) 182 5049 413  (214) 853 

WUYDAV 1754 162  (33) 188 5059 439  (227) 909 

WUYDEX 1754 150  (32) 180 5052 419  (217) 880 

YETPES_1 932 115  (24) 122 2623 305  (170) 490 

YETPES_2 929 117  (25) 126 2618 299  (166) 497 
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Table 5. Comparison of the number of ab initio non-bonded terms needed for non-
bonded EFP/ab initio cutoffs set to 2.7 and 4.5Å at the 2nd and 3rd order many body 
approximation. 
 

  2nd Order Many Body 3rd Order Many Body 

  2.7Å (terms) 4.5Å (terms) 2.7Å (terms) 4.5Å (terms) 

MAQWUW_1 34 233 113 729 

MAQWUW_2 34 224 106 693 

WUYCUO 35 318 108 1054 

WUYDAV 40 327 130 1075 

WUYDEX 36 321 118 1055 

YETPES_1 29 225 79 709 

YETPES_2 25 225 70 708 
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Table 6.  Absolute errors in the FMO2-MP2 and FMO3-MP2 total energy of the 32 water 

clusters selected from EFP Monte Carlo/Simulated Annealing simulations.  Isomer names 

are only used to distinguish isomers from one another. 

 

  Absolute Error (kcal/mol)     

 6-31++G(d,p) 6-311++G(3df,2p) 

Isomer
a
 FMO2-MP2 FMO3-MP2 FMO2-MP2 FMO3-MP2 

32_1 11.8 2.2 26.8 1.0 

32_2 12.4 2.5 28.0 1.2 

32_3 11.4 1.9 27.3 1.3 

32ab 12.5 2.5 27.4 1.3 

32ad 11.8 2.5 27.3 1.2 

32h 12.3 2.5 27.3 1.3 

32o 12.5 2.5 25.8 1.0 

32z 12.4 2.3 24.6 1.2 
a
One water molecule chosen as a monomer 



www.manaraa.com

 

 

190 

Table 7.  Relative FMO2-MP2 and FMO3-MP2 energies of the 32 water clusters selected 

from EFP Monte Carlo/Simulated Annealing simulations.  Isomer names are only used to 

distinguish isomers from one another. 

 

  Relative Energies (kcal/mol)       

 6-31++G(d,p)  6-311++G(3df,2p)  

Isomer
a
 FMO2-MP2 FMO3-MP2 ab initio FMO2-MP2 FMO3-MP2 ab initio 

32_1 0.0 0.0 0.0 0.0 0.0 0.0 

32z 1.3 0.5 0.2 0.7 0.2 0.1 

32_2 1.4 1.2 0.9 1.1 0.8 0.5 

32ab 1.5 1.2 0.9 1.1 0.9 0.6 

32h 1.4 1.2 0.9 1.4 1.0 0.7 

32o 1.7 1.5 1.2 1.7 1.3 1.0 

32ad 4.9 6.0 6.0 5.7 6.1 5.8 

32_3 11.8 14.3 14.1 14.0 14.1 14.4 
a
One water molecule chosen as a monomer 
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Table 8. FMO2 errors (kcal/mol) for tetramer and hexamer ionic liquid clusters. 

 

    Absolute Error (kcal/mol) 

  6-31+G(d)   

Tetramers   FMO2-MP2 FMO3-MP2 

1-H,4-H-1,2,4-triazolium dinitramide  0.06 0.02 

1-amino,4-H-1,2,4-triazolium dinitramide 0.69 0.03 

Hexamers       

1-H,4-H-1,2,4-triazolium dinitramide  0.32 0.07 

1-amino,4-H-1,2,4-triazolium dinitramide 1.35 0.27 
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Table 9. Comparison of Mulliken charges for all ionic liquid systems investigated. 

        Mulliken Charges   

    6-31+G(d)     

Tetramers       FMO2-MP2 FMO3-MP2 MP2 

1-H,4-H-1,2,4-triazolium dinitramide  Cation 1 0.82 0.77 0.74 

   Cation 2 0.82 0.77 0.74 

   Anion 1 -0.82 -0.77 -0.74 

   Anion 2 -0.82 -0.77 -0.74 

       

1-amino,4-H-1,2,4-triazolium dinitramide Cation 1 0.87 0.84 0.82 

   Cation 2 0.82 0.82 0.82 

   Anion 1 -0.89 -0.94 -0.93 

   Anion 2 -0.80 -0.74 -0.71 

Hexamers             

1-H,4-H-1,2,4-triazolium dinitramide  Cation 1 0.86 0.82 0.79 

   Cation 2 0.88 0.85 0.80 

   Cation 3 0.94 0.91 0.87 

   Anion 1 -0.83 -0.79 -0.77 

   Anion 2 -0.95 -0.92 -0.88 

   Anion 3 -0.90 -0.86 -0.81 

       

1-amino,4-H-1,2,4-triazolium dinitramide Cation 1 0.84 0.84 0.88 

   Cation 2 0.79 0.78 0.76 

   Cation 3 0.90 0.89 0.89 

   Anion 1 -0.81 -0.92 -0.95 

   Anion 2 -0.83 -0.85 -0.83 

      Anion 3 -0.88 -0.74 -0.75 

 



www.manaraa.com

 

 

193 

Table 10. Timings for ionic liquid clusters performed on a Cray XT4 with 2.1GHz AMD 

Opteron64 processors.  Each node contains a 4 core CPU and 8 GB of RAM. 

 

      Timing (minutes) 

   6-31+G(d)  

Tetramer   # CPUs FMO2-MP2 MP2 

1-amino,4-H-1,2,4-triazolium dinitramide 8 12.2 28.4 

  16 6.4 14.7 

  32 3.5 7.3 

Hexamer         

1-amino,4-H-1,2,4-triazolium dinitramide 8 24.0 172.1 

  16 12.5 83.9 

    32 6.8 42.8 
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Scheme 1. Depiction of isomers used in Table 2. Structures are from the Cambridge 

Structural Database (CSD).  Non-hydrogen atoms have been labeled. 
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Scheme 2. Depiction of alpha helix isomers used in Table 4. Structures are from the 

Cambridge Structural Database (CSD).  Non-hydrogen atoms have been labeled. 
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FIGURE CAPTIONS 

 

Figure 1.  Sandwich, T-shaped, and parallel-displaced configurations of the benzene 
dimer.  
 
Figure 2. Comparison of SAPT and EFP interaction energy (kcal/mol) decomposition as 
a function of the seperation (Å) of benzene dimer in the sandwhich configuration.  
 
Figure 3. Comparison of SAPT and EFP interaction energy (kcal/mol) decomposition as 
a function of the seperation R (Å) of benzene dimers in the T-shaped configuration. 
 
Figure 4. Electrostatic fractioning of bonds. 

Figure 5. Monomer calculation performed in the ESP of the full system. 

Figure 6. Illustration of FMO approximations applied to three monomers I, J, L (left) and  
as applied to dimer IJ and monomer L (right). 
 
Figure 7. Lowest energy cluster of 32 water molecules obtained from EFP Monte 
Carlo/Simulated Annealing simulations.   
 
Figure 8. Ion pairs of 1-amino,4-H-1,2,4-triazolium dinitramide (top) and 1-H,4-H-1,2,4-
triazolium dinitramide (bottom). 
 
Figure 9. Lowest energy structure of 1-amino,4-H-1,2,4-triazolium dinitramide tetramer 
obtained from an ab initio MP2/6-31+G(d) optimization.     
 
Figure 10. Lowest energy structure of 1-amino,4-H-1,2,4-triazolium dinitramide 
hexamer obtained from an ab initio MP2/6-31+G(d) optimization.   
 
Figure 11. Lowest energy structure of 1-H,4-H-1,2,4-triazolium dinitramide tetramer 
obtained from an ab initio MP2/6-31+G(d) optimization.   
 
Figure 12. Lowest energy structure of 1-H,4-H-1,2,4-triazolium dinitramide hexamer 
obtained from an ab initio MP2/6-31+G(d) optimization.   
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 
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Figure 12. 
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Abstract 

 The systematic fragmentation method has been shown to accurately approximate full ab 

initio calculations. Sub kcal/mol accuracy requires including non-bonded interactions; these are 

computationally demanding due to the sheer number of interactions. A simple approximation to 

the non-bonded interactions using classical electrostatics can work reasonably well in some 

cases, but is not a general solution. Comparatively, the effective fragment potential method 

provides a generally useful representation of non-bonded interactions while still providing an 

approach that is much more computationally efficient than ab initio calculations.  
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1. Introduction 

 Theoretical chemistry has progressed to the point that it is able to achieve “chemical 

accuracy” (~1 kcal/mol) for predicting the energetics related to chemical processes for small 

molecules and to approach chemical accuracy for moderately sized molecules. The ability to 

predict structures, energies, and dynamics for chemical processes can be accomplished through 

ab initio quantum mechanics (QM) methods. The most commonly used QM methods include 

density functional theory (DFT)
1
 and Hartree-Fock (HF)

2
. HF is generally used as the starting 

point for more accurate approaches that include electron correlation, such as second order 

perturbation theory (MP2)
3
 and coupled cluster theory with single, double and perturbative triple 

excitations (CCSD(T)).
4
 For systems requiring more than a single electronic configuration, 

multi-reference methods such as multi-configurational self-consistent field (MCSCF),
5
 multi-

reference perturbation theory (MRPT)
6
 and multi-reference configuration interaction (MRCI)

7
 

are used. All of these correlated methods are computationally demanding, scaling as N
5
 or worse 

where N is the number of basis functions. To achieve chemical accuracy, one needs to combine 

these methods with large atomic basis sets
8
 exacerbating computational demands. In order to 

extend these highly accurate methods to significantly larger chemical systems, one needs to 

develop methods with better scaling. There have been many approaches to accomplishing this, 

including the use of localized molecular orbital (LMO) methods,
7-12

 fast multipole methods 

(FMM),
13-17

 and fragmentation methods in which a large molecular system is fragmented into 

smaller, more tractable pieces.  

 Several general fragmentation methods have been proposed, including molecular 

fragmentation with conjugated caps (MFCC),
18

 the elongation method,
19

 the molecular tailoring 
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approach (MTA),
20

 the fast electron correlation method for molecular clusters developed by 

Hirata,
21

 Truhlar's electrostatically embedded many-body (EE-MB) expansion,
22 

multi-centered 

QM/QM methods,
23

 the fragment molecular orbital (FMO) method
24

 and the systematic 

fragmentation method (SFM).
25

 Initial fragmentation models
26

 built large molecules with a set of 

fragments from common chemical groups (carboxyl, amino, etc.). Newer fragmentation schemes 

begin with the un-fragmented system and break it into smaller parts (fragments). Fragmentation 

schemes need to account for the chemical environment of the full system when calculating each 

fragment. The chemical environment is usually treated in an approximate manner to retain the 

effect of the full system. SFM and its approach to capturing the chemical environment are 

considered in this work.  

2. Systematic Fragmentation Method 

 In order to study large molecular systems, the systematic fragmentation method (SFM) 

considers several sub-systems, or “groups”, independently. By treating each set of overlapping 

groups with accurate levels of theory, the total energy of the system, and other properties, may 

be obtained by addition and subtraction of the contributions from individual groups. This allows 

SFM to achieve a significant decrease in computational expense while retaining good accuracy 

when compared to full ab initio calculations. A complete description of the energy of the system 

is recovered via a perturbative many-body non-bonded term. In the original SFM formulation
25

 

this non-bonded term was obtained using a classical electrostatic potential. SFM is formally 

independent of the electronic structure method and the atomic basis set. Scaling approaches 

linearity as the system size is increased.  
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 2.1 Background 

  In general, molecules can be considered to be composed of sets functional groups that 

are bonded to each other. In this sense, the "groups" that are employed in the SFM can be 

thought of as functional groups. To illustrate the SFM consider ethanol, which contains three 

functional groups (CH3, CH2, and OH). Figure 1 illustrates the fragmentation of ethanol into its 

component substituent functional groups, by breaking two single bonds. In each case, the 

bonding pair of electrons is split, each fragment being assigned one electron from the original 

bonded pair. A “cap” (hydrogen atom) is applied to the dangling bonds that are created by the 

fragmentation to avoid the creation of radical species. Double or triple bonds are not broken, 

retaining the relevant atoms as a part of one functional group. A second example in Figure 1 is 

ethanal which contains two functional groups (CH3 and CHO). The hydrogen capping yields 

three molecules, CH4, CH4, and H2O for ethanol, and two molecules, CH4 and CH2O, for ethanal. 

 The SFM may be implemented at several levels of theory; these levels are defined as 

follows.
25b

 

Consider the molecule M: 

 M = G
1
G
2
G
3
G
4
G
5
G
6
G
7
G
8
        (1) 

At SFM level 1, each broken bond is separated by one functional group Gi. The initial 

fragmentation would create the following pieces: 

  M ! G
1
G
2
+G

2
G
3
G
4
G
5
G
6
G
7
G
8
"G

2  .      (2) 

G2 is subtracted in order to conserve the number of atoms. The process of fragmentation is 

repeated on the G2G3G4G5G6G7G8 fragment until no fragment remains that is larger than two 

functional groups. The energy of M, E(M), can be approximated by a simple sum of fragment 

energies. For SFM level 1 this is: 
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E
bonded

level 1(M ) = E(G1G2 ) + E(G2G3) + E(G3G4 ) + E(G4G5 ) + E(G5G6 ) + E(G6G7 ) + E G7G8( )

! E(G2 ) ! E(G3) ! E(G4 ) ! E(G5 ) ! E(G6 ) ! E(G7 )

. 

(3) 

The superscript “bonded” means that non-bonded interactions are not included in E(M) at this 

point. 

At SFM level 2, each broken bond is separated by two functional groups. The energy of M is 

approximated by the following expression: 

Elevel 2

bonded
(M ) = E(G1G2G3) + E(G2G3G4 ) + E(G3G4G5 ) + E(G4G5G6 ) + E(G5G6G7 ) + E(G6G7G8 )

! E(G2G3) ! E(G3G4 ) ! E(G4G5 ) ! E(G5G6 ) ! E(G6G7 )

.  

(4) 

At SFM level 3, each broken bond is separated by three functional groups. The energy of M is 

approximated by the following expression: 

Elevel 3

bonded
(M ) = E(G1G2G3G4 ) + E(G2G3G4G5 ) + E(G3G4G5G6 ) + E(G4G5G6G7 ) + E(G5G6G7G8 )

! E(G2G3G4 ) ! E(G3G4G5 ) ! E(G4G5G6 ) ! E(G5G6G7 )
 

.

(5) 

SFM has two formal limitations; the first is that if there is conjugation in delocalized molecular 

systems (e.g., butadiene), the entire delocalized moiety must remain intact (not fragmented). The 

second limitation is that one cannot fragment six-member rings using level 3, because capping 

hydrogens approach each other too closely. This causes unphysical repulsive interactions. SFM 

level 2 cannot fragment five member rings, while four and three member rings cannot be 

fragmented at all. A ring repair rule requires the ring to remain intact and to be considered a 

functional group itself. 

 2.2. Non-bonded interactions 

 A simple sum of the individual hydrogen-capped fragment energies neglects interactions 

among the separated (non-bonded) fragments. In the full ab initio calculation these non-bonded 
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interactions are inherently part of the calculation. By assuming that bonded interactions are 

greater in strength than non-bonded interactions, a modified many body expansion may be 

employed to model the non-bonded interactions. 

 2.2.1 Two-body interactions 

 Two arbitrary functional groups G
1
 and G

2
 are placed in their positions in the original 

full molecule M, and their interaction energy is given by 

E
nb

(1,1)
[G

1
;G

2
] = E(G

1
G
2
) ! E(G

1
) ! E(G

2
) ,       (6) 

where E(G
1
),E(G

2
)  are the one-body fragment energies and  E(G1G2

)  is the super-molecular 

energy of the two separated functional groups. All possible pairs of functional groups (not 

considered in the bonded calculation) are considered in the total two-body non-bonded energy of 

the system. Therefore, all pairs of arbitrary functional groups(G1, G2) not contained in any one 

fragment are considered. 

 2.2.2 Three-body interactions 

 Mutual interactions among three arbitrary functional groups G
1
, G

2
 and G

3
 are assumed 

to be negligible unless two of the groups are bonded to one another. Considering  G
3
 bonded to 

G
2
 yields the three-body interaction energy: 

E
nb

(1,2)
G
1
;G

2
,G

3[ ] = E G
1
G
2
G
3( ) ! E G

1( ) ! E G
2
G
3( )

! E
nb

1,1( )
G
1
;G

2[ ]! Enb
1,1( )

G
1
;G

3[ ]

.        (7)

 

 

In Eq. (7) the three-body energy is the super-molecular energy, E(G
1
G
2
G
3
) , minus the one-body 

energies (E(G
1
) , E(G2

G
3
)  ) minus the two body non-bonded energy terms containing any 

group (G
1
) with either of the bonded functional groups (G

2
orG

3
). This scheme can be extended 

to higher order non-bonded interactions. Terms up to n
th

 order form the modified many-body 
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approximation. This work only considers two and three body interactions.  

 Addition of the bonded and non-bonded terms yields the total SFM energy, 

E
SFM

total
= E

bonded
+ E

non-bonded
.             (8) 

Previous work
25c,d 

has shown that level 3 with non-bonded interactions is needed to achieve high 

accuracy (1 kcal/mol) compared to fully ab initio calculations. 

2.3. Effective Fragment Potential method 

 The generalized effective fragment potential (EFP2) method
27

 is a first-principles based 

model potential for the evaluation of intermolecular forces. EFP2 is an extension of the EFP1 

water model to general systems.
28-31

 The EFP-EFP interaction consists of five terms for the EFP2 

model potential: 

E = Ecoul + Eind + Eexrep + Edisp + Ect .         (9) 

These terms correspond, respectively, to Coulombic (electrostatic), induction (polarization), 

exchange repulsion,
 
dispersion (van der Waals), and charge transfer. Damping functions are 

employed for the Coulomb, induction and dispersion terms, to account for short- or long-range 

behavior. Each of these terms may be thought of as a truncated expansion. 

 The EFP interactions decay either exponentially with respect to distance for short range 

interactions or as (1/R)
n
 for long range interactions. The Coulombic, induction, and dispersion 

are long-range interactions. The exchange repulsion and charge transfer are short-range 

interactions. A more complete description of EFP has been detailed previously;
27-31

 a short 

overview of the terms is outlined below. 

 The Coulomb interaction is obtained via the Stone distributed multipolar analysis.
32

 This 

expansion is truncated at the octopole term. Atom centers and the bond midpoints are used as 

expansion points.  
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 Induction (polarization)
 
is the interaction of an induced dipole on one fragment with the 

permanent dipole on another fragment, expressed in terms of the dipole polarizability.  

Truncating at the first (dipole) term is viable, since the molecular polarizability tensor is 

expressed as a (distributed) tensor sum of localized molecular orbital
33

 (LMO) polarizabilities. 

The number of polarizability points is equal to the number of bonds and lone pairs in the system. 

 An expansion in the intermolecular overlap integral, in a frozen LMO basis, is used to 

evaluate the exchange repulsion.
34

 The expansion in terms of frozen LMOs on each fragment 

allows truncation at the quadratic term. Since the basis set required to compute the exchange 

repulsion interaction is used only to calculate overlap integrals, the computation is very fast and 

quite large basis sets are realistic.  

 Dispersion interactions are often expressed by an inverse R expansion,  

Edisp = CnR
!n

n

"
.          (10) 

The coefficients Cn may be derived from the (imaginary) frequency dependent polarizabilities 

integrated over the entire frequency range.
35

 The first term in the expansion, n=6, corresponds to 

the induced dipole-induced dipole (van der Waals) interactions. In the EFP2 method, this term is 

derived from the time-dependent HF method. Additionally the contribution of the n=8 term is 

estimated. The C6 coefficients are derived in terms of interactions between pairs of LMOs on the 

two interacting fragments. 

 Charge transfer interactions in the EFP2 method are derived using a second order 

perturbative treatment of the intermolecular interactions for a pair of molecules at the Hartree–

Fock level of theory.
36

 The energy is evaluated by determining the energy due to the occupied 

valence molecular orbitals on one fragment interacting with the virtual orbitals on another 

fragment. Charge transfer can be important for polar or ionic species. 
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 The use of classical approximations for the Coulomb and induction terms requires short-

range interactions to be moderated by an additional damping function. A classical (point 

multipole) Coulombic interaction becomes too repulsive at short range; this can be corrected by 

the damping term.
37

 Induction, on the other hand, becomes too attractive at short distances, so a 

damping term is employed here as well. The form of these damping functions is an exponential 

which augments the electrostatic multipole of the form: 

fdamp = 1 ! exp(!"R),           (11) 

where parameters " are determined at each multipole expansion point by fitting the damped 

multipole potential to the Hartree–Fock potential. Damping terms for the electrostatic and 

induction terms are derived explicitly from the damped potential and the charge density. Short-

range dispersion interactions should decrease to zero. Therefore, each dispersion term is 

multiplied by a damping function as well. In the work described here, two damping methods are 

explored, one due to Tang and Toennies
38

 and a new approach based on the intermolecular 

overlap.
39

 

 The five EFP interaction terms have different relative costs. Considering small EFP 

clusters, and considering the Coulomb term to be one time unit, the induction interaction would 

cost approximately one unit, dispersion one unit, exchange repulsion would cost five units, and 

charge transfer ~50 units. Thus some trade off between computation time and completeness of 

the potential may be considered. EFP calculations are basis set dependent. The smallest 

recommended basis set is 6-31++G(d,p).
40 

The computational cost of an EFP calculation appears 

primarily in the initial generation of the EFP, not in EFP-EFP interactions. Therefore, one can 

employ much larger basis sets with minimal cost. In the tests presented below on the SFM 

method, the 6-311++G(3df,2p)
41

 basis is used. EFP contains no empirically fitted parameters, 
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allowing automatic creation by a “makefp” run in the GAMESS
42

 suite of programs. It has been 

demonstrated that the EFP2-EFP2 intermolecular (e.g., non-bonded) interaction energies are 

frequently as accurate as MP2, at a small fraction of the MP2 cost. This suggests the efficacy of 

determining the SFM non-bonded interactions using this method. 

3. Computational details 

 ZOVGAS (Figure 2) is a compound selected from the Cambridge Structural 

Database(CSD)
43

 containing a combination of several first and second row atoms. So, it provides 

a nice test of the SFM. Comparisons of the performance in determining the SFM non-bonded 

contribution are demonstrated by calculating the non-bonded interactions via the CCSD(T)
4 

and 

EFP methods, using the 6-311++G(3df,2p) basis set.  

 Retinal structures (Figure 3) from the CSD (TRETAL02, CRETAL01) were optimized 

with MP2/6-311G(3df,2p) and verified by Hessians to confirm the stationary points. The SFM 

bonded energy is treated at level 3 fragmentation using MP2/6-311++G(3df,2p) and EFP/6-

311++G(3df,2p) for the non-bonded level 3 term. The alpha helix structures (MAQWUW, 

WUYCUO, WUYDAV, WUYDEZ, YETPES) shown in Figure 4 are taken from the CSD. HF 

single points are examined using the 6-31++G(d,p) basis set. MP2 calculations on the full system 

would have been prohibitively expensive. HF/6-31G++G(d,p) SFM bonded energies are 

determined at level 3 fragmentation, with EFP/6-311++G(3df,2p) non-bonded interactions 

performed with 2-body and 3-body interactions. 

  The EFP dispersion term has been treated by overlap damping unless otherwise noted.  

All EFP terms are used including charge transfer for all non-bonded interactions. All calculations 

were carried out with the GAMESS suite of programs.
42
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4. Results 

 4.1 ZOVGAS 

 The non-bonded energy of ZOVGAS (Figure 2) consists of 129 separate interactions, 

including 1-, 2-, and 3-body terms. The shortest non-bonded atom-atom distances range from 2.3 

- 4.6 Å. Table 1 shows these non-bonded interaction energies calculated using MP2, CCSD(T), 

and EFP. The two EFP columns in this table differ only in the method that was used for 

dispersion damping: Tang-Toennies damping in column 3 of the table and the new overlap 

damping in column 4. The MP2 and CCSD(T) non-bonded interaction energies are in good 

agreement with each other, while the EFP method overestimates the non-bonded interaction 

energy. It is clear from the last two columns of the table that the overlap dispersion damping is 

more reliable, as suggested in Ref. 39. In Figure 5 the difference between the EFP and CCSD(T) 

interaction energies is plotted vs. the nearest atom-atom distance for each non-bonded pair. As 

the nearest atom-atom distance decreases, the EFP error relative to CCSD(T) systematically 

increases. In general, there is good agreement between EFP and CCSD(T) for non-bonded 

distances that are larger than 2.7 Å. For longer non-bonded atom-atom distances, the EFP error 

(Table 1) is small (~ ±0.1 mh), and the two damping methods are in good agreement with each 

other. Therefore, in subsequent SFM calculations, the QM method of choice (e.g., CCSD(T)) is 

used for non-bonded distances that are 2.7 Å or shorter, while EFP is used for distances longer 

than 2.7 Å. This is monitored by using a distance cutoff dmin. The use of the overlap dispersion 

damping is recommended and used in the remainder of the study. 

 It is interesting to consider the basis set superposition error (BSSE) for the CCSD(T) non-

bonded interactions. Since EFP is a model potential, it has no BSSE, while the quantum methods 

do. Ten of the ZOVGAS non-bonded interactions, with atom-atom distances ranging from 2.3 - 



www.manaraa.com

 

 
 

226 

4.4 Å were used to calculate the CCSD(T) BSSE. This was done using the standard counterpoise 

method,44 although Truhlar has noted that such corrections can be unreliable.45 For these 10 

cases, the CCSD(T) BSSE is of the same order of magnitude as the interaction energy itself. So, 

the EFP errors may be less than they appear in Table 1.  

 The origin of the errors in the non-bonded interactions can be assessed by comparing the 

EFP-EFP interactions with those obtained from symmetry adapted perturbation theory (SAPT)46. 

For the same set of 10 test interactions noted in the previous paragraph, EFP and SAPT are in 

good agreement, except for the Tang-Toennies damped dispersion interactions where the atom-

atom distances are less than 3 Å. The Tang-Toennies damping with a fixed parameter in the 

exponent33a may not be adequate to correctly capture the dispersion interactions at short range. 

Nonetheless, the agreement between CCSD(T) and EFP used only for distances greater than 2.7 

Å is excellent. 

 Table 2 compares the CPU times required to calculate the 129 non-bonded interactions 

with CCSD(T), with EFP, and with EFP only for non-bonded interactions whose atom-atom 

distances are greater than 2.7 Å (called “mix” in the table). The CCSD(T) calculations required 

more than 5,000 CPU hours, whereas the EFP calculations required ~1 minute. Creation of the 

potentials themselves took just over four hours for all 37 unique fragments. The “mix” approach, 

which is in excellent agreement with CCSD(T), required ~ 500 CPU hours, an order of 

magnitude less than CCSD(T) itself.  

 4.2 Retinal 

 Retinal is a well-known example of a cis-trans isomerization. One of the goals in any 

model chemistry methods is the ability to reproduce relative energies of a system. Using dmin = 

2.7 Å, the cis-trans isomerization of retinal (Figure 3) was compared for fully ab inito MP2/6-
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311++G(3df,2p) and SFM. The SFM calculations employ EFP for the non-bonded interactions 

with dmin = 2.7. Table 3 shows that SFM is able to reproduce the MP2 relative energies to within 

0.5 kcal/mol of the full ab inito calculations. 

  4.3 Alpha Helix 

 The motivation to use the EFP method for non-bonded interactions, rather than a point 

charge model, was based on the fact that electrostatic treatment of the non-bonded term does not 

capture many body polarization effects such as the stacked dipole of an alpha helix. As an 

example WUYDAV (Figure 4) has a dipole moment of 55.6 D. Table 4, shows the SFM and 

HF/6-31++G(d,p) isomer energies for model alpha helices, ranging from 125-170 atoms. 

Increasing the non-bonded term from level 2 to level 3 improves the mean absolute error by ~1 

kcal/mol, while on average doubling the time required to calculate the non-bonded interactions. 

The SFM errors obtained using the overlap dispersion damping with dmin =2.7Å  are ~ 1 kcal/mol 

smaller than when the non-bonded term is treated via ab inito or EFP alone. This suggests that 

the EFP calculations may, in fact, be more reliable than HF for the non-bonded interactions. 

5. Conclusions 

 The non-bonded interactions in the three systems considered here explore a broad range 

of such interactions that are encountered in organic molecular systems. It is apparent from the 

results presented here that the EFP method presents a viable way to determine non-bonded 

interactions in fragmentation methods like the SFM for nearest atom-atom distances larger than 

2.7 Å. At shorter non-bonded distances, the EFP method is not as reliable, especially when fixed-

parameter Tang-Toennies dispersion damping is used. However, it appears that the CCSD(T) 

BSSE is significant, and this would ameliorate the apparent EFP error. The dispersion overlap 

significantly improves the performance of the EFP approach. The prescription presented here, to 
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use the ab initio method of choice for interactions with atom-atom distances ! 2.7 Å, yields 

~kcal/mol accuracy with an order of magnitude improvement in the computational cost. Using 

the EFP for all non-bonded terms achieves three orders of magnitude improvement in the 

computational cost, but does not generally yield kcal/mol accuracy.  
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Table 1. In (a), all non-bonded interactions (kcal/mol) are calculated using the indicated level of 

theory. In (b), CCSD(T) is used in the EFP column for all non-bonded interactions with 

separations ! 2.7 Å  

 MP2 CCSD(T) EFP† EFP§ 

 

(a) non-bonded -3.38 -4.14 -11.95 -5.96 

(b) non-bonded -- -- -3.30 -3.77 

† Tang-Tonnies damping of the dispersion term 
§ overlap damping of the dispersion term 
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Table 2. Timings for calculating the 129 interactions in ZOVGAS. In the column labeled Mix, 

CCSD(T) was employed for all interactions with nearest atom- atom distances ! 2.7 Å. 

 CCSD(T) EFP    Mix 

Hours   5038 4.1  ~500 
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Table 3. Relative MP2/6-311++G(3df,2p) energies (kcal/mol) of retinal cis-trans isomers with 
fully ab inito (MP2) and SFM level 3 using non-bonded level 3 (SFM). MP2/6-311++G(3df,2p) 
was employed for all interactions with nearest atom- atom distances ! 2.7 Å. 
 

       MP2      SFM      

trans Retinal 0.0 0.0 

11-cis Retinal 3.9 4.1 
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Table 4. Absolute SFM HF/6-31++G(d,p) errors in isomerization energies (kcal/mol) for alpha 

helixes (see Figure 4) relative to ab initio. Fragmentation level 3 is used with non-bonded level 2 

(NB2) and Level 3 (NB3). HF/6-31++G(d,p) was employed for all interactions with nearest 

atom- atom distances ! 2.7 Å. Fully HF SFM non-bonded absolute errors (dmin = ") in 

parentheses. Fully EFP absolute errors (dmin = 0) in square brackets. 

  NB2 NB3 

 HF/6-31++G(d,p) HF/6-31++G(d,p) 

Isomer HF kcal/mol HF kcal/mol 

MAQWUW_1-MAQWUW_2 2.5  (1.1)  [2.5] 2.2  (0.2)  [1.9] 

WUYCUO-WUYDAV 2.6  (5.8)  [1.7] 2.1  (6.1)  [10.7] 

WUYCUO-WUYDEX 3.4  (2.5)  [2.9] 0.3  (3.1)  [4.1] 

YETPES_1-YETPES_2 1.9  (5.3)  [4.1] 0.3  (1.0)  [3.1] 

Mean Absolute Error 2.6  (3.7)  [2.8] 1.2  (2.6)  [4.9] 

Mean Absolute Standard Error 0.6  (3.7)  [1.0] 1.0  (2.6)  [3.9] 
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Figure 1. Pictorial examples of level 1 fragmentation for ethanol and ethanal. The first step 

breaks bonds creating functional groups; hydrogens are capped at a chemically reasonable bond 

distance in the direction of the broken bond. 
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Figure 2. The ZOVGAS molecule used as a test for EFP non-bonded interactions. Structure is 

from the Cambridge Structural Database (CSD) 
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Figure 3. Depiction of retinal isomers used in Table 3. Structures are from the Cambridge 

Structural Database (CSD).   
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Figure 4. Depiction of alpha helix isomers used in Table 4. Structures are from the Cambridge 

Structural Database (CSD). 
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Figure 5. A plot of the 129 non-bonded level 3 interactions of ZOVGAS. The nearest atom-atom 

distance (Å) is plotted vs. the EFP interaction energy minus the CCSD(T) interaction energy. 

Both the Tang-Tonnies (!)dispersion damping scheme and the overlap (•) dispersion damping 

scheme are shown. 
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MOLECULAR DYNAMICS SIMULATIONS WITH THE EFFECTIVE 

FRAGMENT POTENTIAL METHOD 
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Abstract 

1. Introduction 

 Condensed phase phenomena have increasingly become the focus of computational 

chemistry given that environmental effects can be important to chemical and biological 

processes. Methods that can scale from clusters to the condensed phase without limiting 

accuracy are necessary for reliable prediction of bulk properties. Atomistic molecular 

dynamics (MD) simulations require accurate solvent models that can accurately predict 

relevant bulk properties such as density, local structure, compressibility, diffusion, and 

dielectric constant. Discrete solvent models are usually parameterized to reproduce bulk 

properties
1 

or due to computational cost are more appropriate for clusters than for large 

MD simulations.  

 The effective fragment potential (EFP)
2
 method was originally designed and 

implemented to describe discrete solvent effects. The initial focus was on the accurate 

prediction of the effect of solvents on chemical reactions and on the study of small 

clusters of water molecules. The EFP method has been shown to accurately reproduce 

cluster properties,
3
 solvent mediated reactions,

4 
global minima obtained from Monte 

Carlo simulations,
5
 and preliminary reports illustrated that EFP/MD can reproduce radial 

distribution functions of water, benzene, and CCl4 reasonably well.
6
 The present work 
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introduces the theory and evaluation of several properties via EFP/MD simulations using 

water and argon as examples.  

2. Theoretical and Computational Details 

  2.1 EFP (Effective Fragment Potential) 

The effective fragment potential (EFP) has two implementations, (EFP1) a water-

specific model with empirically fitted parameters, and (EFP2) a general model for any 

molecular system that has no empirically fitted parameters. The EFP1 model has been 

implemented at the HF,
7
 DFT,

8 
and MP2

9
 levels of theory. %&'(!)*+!,--.! /.0-12*0-3!

4/0)!5&67!8&96:!;<=<&6(>!+/.1?@!-AB/0-3!BC.D/1E2*0/C.!/.0-2*B0/C.!F<G=H6((!*.3!0/I-J

3-K-.3-.0! 3-.+/0@! DE.B0/C.*?! 0)-C2@! F988&9HL("! The EFP1 method contains one-

electron potentials, which may be added to an ab initio electronic Hamiltonian of a 

solute.  There are three interaction energy terms in EFP1, corresponding to Columbic 

(electrostatic) interactions, induction (polarization), and a third term fitted to the water 

dimer potential. This last term contains those interactions that are not accounted for in the 

first two: exchange repulsion + charge transfer. In the MP2 version of EFP1, dispersion is 

treated as an additional term. The Coulombic and induction terms are determined from 

monomer QM calculations. The EFP1 formulation for an EFP solvent molecule µ and a 

QM coordinate s as follows: 

V
el
(µ, s) = V

k

Elec

k=1

K

! (µ, s) + V
l

Pol
(

l

L

! µ, s) + V
m

Rem
(µ, s)

m

M

!
    (1) 
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The three terms on the right hand side of Eq. (1) represent the Coulomb, induction, and 

remainder terms, respectively, where K, L and M are the number of corresponding 

expansion points. 

The Coulomb interaction is obtained via the Stone distributed multipolar 

analysis.
13

 This expansion is truncated at the octopole term. In EFP1 K=5 expansion 

points for the water molecule (nuclear centers and bond midpoints).  

 The polarization/induction term in Eq. (1) describes the interaction of an induced 

dipole on one fragment (or solute molecule) with the permanent dipole on another 

fragment (or solute molecule), expressed in terms of the dipole polarizability. Truncating 

at the first (dipole) term in the polarizability expansion is viable, since the molecular 

polarizability tensor is expressed as a tensor sum of localized molecular orbital
14

 (LMO) 

polarizabilities. For water, four such LMOs are used: two O lone pairs, and two O-H 

bonds. The polarization energy is then iterated to self-consistency (within the SCF cycles 

if a quantum solute is present), so it is able to capture some many body effects 

 The remainder term includes exchange repulsion, charge transfer, and some short-

range correlation contribution (in EFP1/DFT). The dispersion (in EFP1/MP2) is a 

separate fourth term.  These interactions are represented by a linear combination of 

Gaussian functions expanded at the atom centers for EFP-QM interactions. The EFP-EFP 

interactions are expanded at atom centers and the center of mass via a single exponential 

to capture the angular dependence of the charge transfer contribution.
7
 The coefficients 

and exponents of the Gaussian and exponential functions were optimized, by fitting to 
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water dimer structures, chosen to represent a selection of water-water orientations and O-

O distances.
7
 

 In EFP2
2a

 all terms are derived from first principles with no empirically fitted 

parameters, therefore it can be used to represent any molecule of interest.  The interaction 

energy includes Coulomb, polarization, exchange-repulsion,
15

 dispersion
16

 and charge 

transfer.
17

 

E = Ecoul + Eind + Eexrep + Edisp + Ect.       (2) 

 The first two of these terms are evaluated in exactly the same manner as in EFP1. 

The five terms in the EFP2 potential may be grouped into long range, (1/R)
n
 distance 

dependent, or short range interactions, which decay exponentially.  The Coulombic, 

induction, and dispersion are long-range interactions, whereas the exchange repulsion and 

charge transfer are short range. 

 The exchange repulsion interaction between two fragments is derived as an 

expansion in the intermolecular overlap.
15

 When this overlap expansion is expressed in 

terms of frozen LMOs on each fragment, the expansion can reliably be truncated at the 

quadratic term. Since, once the EFP has been generated, the basis set is used only to 

calculate overlap integrals as the inter-fragment geometry changes, the computation is 

very fast and quite large basis sets are realistic.  

Dispersion interactions are often expressed by an inverse R expansion, 

Edisp = CnR
!n

n

"            (3) 
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where the coefficients Cn may be derived from the (imaginary) frequency dependent 

polarizabilities integrated over the entire frequency range.
16

 The first term in the 

expansion, n=6, corresponds to the induced dipole-induced dipole (van der Waals) 

interactions. In the EFP2 method, this term is evaluated using the time-dependent HF 

method. In addition the contribution of the n=8 term is estimated.
16a

 The C6 coefficients 

are derived in terms of interactions between pairs of LMOs, one each on the two 

interacting fragments.  

 The charge transfer interaction is derived using a supermolecule approach, in which 

the occupied valence molecular orbitals on one fragment are allowed to interact with the 

virtual orbitals on another fragment. This interaction term leads to significant energy 

lowering in ab initio calculations on ionic or highly polar species when incomplete basis 

sets are employed.
 17

 

 Treating the Coulomb, induction and dispersion terms with a classical 

approximation does not correctly model short-range interactions where quantum 

mechanical charge densities begin to overlap. Therefore, each term is multiplied by a 

damping (screening) expression. These short distances cause the classical Coulombic 

interactions do become too repulsive, while the induction is too attractive. The unphysical 

behavior is avoided by augmenting the electrostatic multipoles with exponential damping 

functions of the form: 

fdamp = 1 ! exp(!"R)           (4) 

where parameters " are determined at each multipole expansion point by fitting the 

multipole damped potential to reproduce the Hartree–Fock potential.
18

 For induction, 
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both exponential damping, as in Eq. (2) and Gaussian damping are effective, but the 

Gaussian damping seems to be more generally applicable and is therefore recommended. 

Dispersion interactions formally decrease to zero at short range; therefore, the Tang-

Toennies damping function Eq. (5) is used:
 19

  

fn (R) = 1! e
(!bR) (bR)

k

k!k=0

n

"         (5) 

In the EFP model n is set to 6, and b is set to the same value for all LMO-LMO pairs
19

. A 

new approach based on the overlap integrals between interacting fragments
20

 appears to 

be promising and will be used in subsequent applications. In future EFP applications, the 

overlap-based dispersion damping is recommended, because it appears to be more 

generally effective.  

 It is useful to consider the relative costs of the five EFP interaction terms. Based on 

relatively small molecules and taking the cost of the Coulomb and dispersion terms to be 

one unit, the induction interaction costs approximately two units, exchange repulsion 

costs about five units, and charge transfer costs ~10 units. For larger molecules, the 

relative costs of exchange repulsion and charge transfer will decrease since they will 

scale linearly in the large molecule limit. The EFP method is basis set dependent, since a 

basis set is used to generate the multipoles and the molecular polarizability tensor, and to 

evaluate the exchange repulsion and charge transfer interactions.  

 The EFP model is currently a rigid body model potential, so the internal 

geometries of fragments are fixed. Within this constraint, analytic gradients for all terms 

have been derived and implemented, so full intermolecular geometry optimizations can 
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be performed. Because the method involves no empirically fitted parameters, an EFP for 

any system can be generated by a “makefp” run in the GAMESS21 suite of programs. 

 2 .2 MD simulations 

 The simulations, unless otherwise stated, were performed using 64 molecules with 

periodic boundary conditions in the NVT ensemble. The temperature (T) was maintained 

at 298.16 K for water and 85.0 K for argon, by employing a Nosé-Hoover thermostat.22 

The simulation density was chosen to be 0.997 g/cm3 for water and 1.375 g/cm3 for Ar. 

The equations of motion were integrated with the velocity Verlet algorithm23 with a time 

step of 1 fs over 500ps. The first 100 ps were treated as an equilibration. The molecule-

molecule interaction energies were treated with a simple switching function.6b The 

switching function shown in Eq. (6) shifts the pairwise potential function smoothly to 

zero in the range of 5 - 6.2 Å for water-water interactions and 6.0 - 9.0Å for Ar-Ar 

interactions.  

if rc.m. ! ra ,S = 1

if ra < rc.m. < rb.,S = 1"10
r
2

c.m. " r
2
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if rb < rc.m.,S = 0
  (6) 

In Eq. (6) rc.m. is the distance between the centers of masses of two interacting molecules. 

ra and rb are the starting and ending points, respectively, of the switching function. When 

rc.m.=ra and rc.m.= rb, both the first and second derivatives of S are zero. 

 Cutoffs for the Coulombic interactions (charge-charge, charge-dipole, dipole-

dipole, and charge-quadrupole) were treated via Ewald summation.24 The EFPs were 

created with the 6-31++G(d,p) basis set.25 All calculations were done with the 
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GAMESS21 suite of programs. The Ar dispersion uses Tang-Toennies damping (Eq. (5)) 

with b=2.8. For water b=3.0. The overlap-damped dispersion is reported for gOO(r) only. 

Induction damping has been used in all the simulations. The geometry used for the water 

models has an OH bond distance of 0.948636 Å and an HOH bond angle of 106.0732˙. 

 2.3 Bulk Property evaluation  

 2.3.1 Diffusion 

Diffusion may be calculated in two ways.26 First, one can use the slope of the time 

dependent mean-squared displacement from the initial coordinates. This is represented by 

the Einstein equation: 

 

2tD =
1

3
r
i
(t) ! r

i
(0)

2
,        (7) 

r(t) is  the center of mass position vector at time t, r(0) are the initial x,y,z center of mass 

coordinates, D is the diffusion constant. Alternately the velocity auto correlation function 

may be used to calculate the diffusion constant.  

D =
1

3
dt V

i
(t)•V

i
(0)

0

!

" ,        (8) 

V
i
(t) %&! '()! *)+,-%'.! ,/! 012'%-+)! %! 1'! '%3)! '4! V

i
(0) ! %&! '()! %5%'%1+! x,y,z -)5')2! ,/! 31&&!

*)+,-%'.!,/!012'%-+)!%4!and D is the diffusion constant. The values reported and discussed 

below use the velocity auto correlation function.  

 2.3.2 Heat of Vaporization 

The heat of vaporization is obtained using the equation:27 
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!H
vap

" # E + RT ,         (9) 

E is the energy of the liquid system, R is the gas constant and T is the simulation 

temperature.  

 2.3.3 Static Dielectric Constant 

Using the total dipole moment of the system, M, one can calculate the static dielectric 

constant !0 via:  

!
0
= 1+

4"

3Vk
B
T
( M

2
# M

2
) ,       (10) 

kB is the Boltzmann constant, V is the average volume of the system, and T is the 

simulation temperature. Convergence of dielectric constants is slow often taking several 

ns.28   

2.3.4 Coordination number
29

 

Using a radial distribution function the coordination number can be calculated via: 

nc =
N

V
4! r

2
g(r)dr

0

Rc

"  ,        (11) 

N is the number of water molecules in the system; V is the volume within a radial cutoff 

of Rc. g(r)  is the radial distribution function. The coordination number, n
c
, is the 

number of molecules coordinated with a central molecule.29 For water Rc = 3.3Å was 

used for the gOO(r), while for argon, Rc =5.5 Å. These Rc were chosen based on 

previously published work.33,43
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 2.3.5 Kirkwood factors (infinite and finite)
30 

The Kirkwood factors are temperature dependent dielectric properties. The finite 

Kirkwood factor is a fluctuation formula using the equilibrium squared dipole moment 

fluctuations: 

G
k
=

M
2
! M

2

N µ2
,         (12) 

µ %&! '()! *'+,%-! .%/+0)! ,+,)1'2! 3! %&! '()! &4&'),! .%/+0)! ,+,)1'5 The infinite 

Kirkwood factor depends directly on the &tatic dielectric constant (!
0
6! *1.! '()! 7%1%')!

8%9:;++.!7*-'+9!(G
k
6 via:  

gk =
2!

0
+1

3!
0

Gk
.         (13) 

 2.3.6 Isothermal compressibility
31 

Finite differencing is used to calculate the isothermal compressibility via: 

 

!
T

=
1

V

"V
"T

# 

$ 
% 

& 

' 
( 

T

) *
ln(+2 /+1)
T2 *T1

# 

$ 
% 

& 

' 
( 

T

,       (14) 

 

!
1
" !

0
+ 0.04 and 

 

!
2
" !

0
# 0.04 .

 

!
0
 is the equilibrium density (0.997 g/cm

3
) at 298.15K 

and 1 atm. This required two NVT simulations, run for 100ps. The value reported is an 

average over the previous 80ps. 

 2.3.7 Hydrogen bond lifetime 
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Using the Luzar-Chandler model32 for the hydrogen bond lifetime, the following 

correlation functions were calculated. 

 

c(t) =
h(0)h(t)

h
         (15) 

n(t) =
h(0)[1! h(t)]H (t)

h
        (16) 

h(t) denotes if a tagged pair of molecules is hydrogen bonded (h(t)=1) or not (h(t)=0) at 

time t.  The criterion of a hydrogen bond is defined as an  O ! H!O  angle of greater 

than 150˙ and O-O distance less than 3.5Å. h(0) uses these definitions for initial 

conditions. h ! %&! '()! *+),*-).! +*/0)! 12! h(t) 1+),! '()! &%30/*'%145  H(t)=1 if the 

oxygen-oxygen distance of the tagged molecules is less than a given cutoff (3.5Å) at time 

t, otherwise H(t)=0. For long times, 

 

!
dc

dt
= kc(t) ! " k n(t)  and the hydrogen bond lifetime 

is given by 

 

!
HB

=1/k . Time derivatives of c can be calculated from the simulation by Eq. 

(15), 

 

dc

dt
=
h(0)[1! h(t)]

h
 .        (17) 

Hydrogen bond lifetime calculation requires an NVE simulation, which was run for 

100ps. The average temperature over the simulation was 300k. 

 3. Results and Discussion 

 3.1 Water 
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 Figure 1 compares the water radial distribution functions gOO(r) for EFP1/MP2 

and for EFP2 with several variants of basis sets and dispersion damping. The MP2 

version of EFP1 was chosen because it includes dispersion and therefore provides a more 

accurate gOO(r) than EFP1/HF and EFP1/DFT.
6a

 In cluster studies larger basis sets have 

been shown to improve the ability of EFP2 to reproduce the results of ab initio 

calculations.
18a

 However, preliminary molecular dynamics (MD) simulations suggest no 

significant basis set effects, so modest basis sets are employed here. Recently, a 

dispersion damping approach that is based on the intermolecular (inter-EFP) overlap was 

implemented for the EFP2 method.
20

 The results obtained using both the Tang-Toennies 

and overlap damping of dispersion are displayed in Figure 1.  

 The blue curve in Figure 5 uses Tang-Toennies dispersion damping (b=3.0 in Eq. 

(5)) with the 6-31++G(d,p) basis set. The overlap dispersion damping is examined using 

both the 6-31++G(d,p) (red curve) and 6-31G(d,p) (orange curve) basis sets. This 

comparison illustrates the importance of including diffuse functions in the basis set, in 

order to obtain an accurate gOO(r). If overlap damping and the 6-31++G(d,p) basis set is 

used, EFP2 nearly reproduces the X-ray gOO(r).
20c

 If diffuse functions are omitted the two 

*
peaks in the calculated gOO(r) are in the correct positions, but the first peak is too high 

and the intermediate well is too deep.  The EFP1/MP2 gOO(r) is in reasonably good 

agreement with the experimental curve. This is satisfying, but as noted earlier, EFP1 is 

only applicable to water, while EFP2, with no empirically fitted parameters, is applicable 

to any system and is therefore much more general. The fixed geometry can influence 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!
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property evaluation. In the case of the static dielectric constant, structure of a model can 

have a large effect.
33 

 

 The predictions of EFP2 bulk properties, obtained from the MD simulations, are 

based on the Tang-Toennies dispersion damping. These results, as well as those obtained 

using EFP1/MP2 and the simpler SPC/E
1a

 potential, are compared with the experimental 

values in Table 1. All of the computational methods are in reasonable agreement with 

experiment. Each of the three methods – SPC/E, EFP1/MP2 and EFP2 are in closer 

agreement with experiment for some properties, but none of the three methods stands out 

as superior to the other two. Both EFP models were able to nearly reproduce the bulk 

dipole moment.
34

 The predicted coordination numbers
33

 are in good agreement with 

experiment as are the gOO(r).
35

 Both EFP models overestimate the heat of vaporization 

compared to expirement;
36

 however, the EFP heat of vaporization agrees well with the 

recent work of Fanourgakis, Schenter, and Xantheas.
27

 They extrapolated the quantum 

effects of water based on small clusters to a centroid MD simulation. This may suggest 

that the semi-classical nature of the EFP model potential can capture some of the 

quantum effects lacking in classical model potentials. Diffusion constants of 2.42x10
-5

 

cm
2
s

-1
 and 2.17x10

-5
 cm

2
s

-1
 was found for EFP1/MP2 and EFP2 compared to an 

experimental value of 2.3x10
-5

 cm
2
s

-1
.
37

 The relative permittivities of 72 and 85 predicted 

by EFP1/MP2 and EFP2 are in good agreement with the experimental value of 78.5.
38

 

The Kirkwood factors predicted by both EFP methods compare well with both 

experiment and the SPC/E values.
38

 The isothermal compressibility predicted by both 

EFP1/MP2 (4.46 x10
-5

 atm
-1

)
 
and EFP2 (4.84 x10

-5
 atm

-1
) are in reasonable agreement 

with the experimental value of 4.84 x10
-5

 atm
-1

.
39

 The average hydrogen bond lifetime, 
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apparently not known experimentally for water, is predicted by EFP1/MP2, EFP2, and 

SPC/E to be 2.1ps, 2.5ps, and 2.3ps, respectively.33 The performance of EFP2 in 

predicting these properties is particularly encouraging, given the generality of this 

method.  

 3.2 Argon 

 The Tang-Toennies (b=2.8) dispersion damping facilitates good accuracy of the 

liquid argon system; simulations with the overlap dispersion damping are currently being 

run. The radial distribution function for gAr-Ar(r) is shown in Figure 3 for EFP2 and 

compared with the experimental neutron scattering data.40 Theory and experiment are in 

reasonably good agreement, with the EFP2 peak and valley slightly shifted to larger 

values of r. Comparisons to bulk properties are shown in Table 2. Again, there is 

reasonable agreement between EFP2 and experiment, with EFP2 slightly over-estimating 

the heat of vaporization and the diffusion constant. The EFP2 coordination number is 

predicted to be 8.8 compared to 8.8-10.4 for several Ar models and 11.4 at the argon 

triple point for Rc=5.5 Å.42  

4. Conclusion 

 The effective fragment potential is able to reproduce bulk properties of liquid water 

for both EFP1/MP2 and the general EFP2 model as accurately as SPC/E, which was been 

fitted to reproduce bulk properties. The inclusion of diffuse functions in the EFP2 model 

was necessary to nearly reproduce the gOO(r) when using the overlap dispersion damping. 

Initial tests appear to show that other properties in MD will be similar to those presented 

here for the overlap damping. The EFP2 method predicts slightly larger heats of 

vaporization and diffusion coefficients compared to experiments for liquid argon. The 
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EFP method has now successfully predicted bulk behavior in liquid systems in addition 

to previous use as an accurate approach for predicting explicit solvent effects on small 

clusters. 

 

5. Acknowledgements 

! %&'! ()*&+,-! (,'! .,(*'/)0! *+! *&'! 12,! 3+,4'! 5//24'! +/! 642'7*2/24! 8'-'(,4&! /+,!

/)7927.:!(79!*&(7;!Dr. Bill Swope, <,+/'--+, Gregory Voth, and <,+/'--+, Lyudmila 

Slipchenko for helpful discussions and advice.  

References. 

1. Jorgensen, W. L.; Madura, J. D. Mol. Phys. 1985, 56, 1381.  (spc) (b) Berendsen, 

H. J. C.; Grigera, J. R.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269. (spc/e ?) 

2. Gordon, M.S.; Slipchenko, L.; Hui, L.; Jensen, J.H. Ann. Rep. Comp. Chem. 2007, 

3, 177. (b) Gordon, M.S.; Freitag, M.A.; Bandyopadhyay, P.; Kairys, V.; Jensen, 

J.H.; Stevens, W.J. J. Phys. Chem. 2001, 105, 293.   

3. (a)Aikens, C. M.; Gordon, M. S.  J. Am. Chem. Soc. 2006, 128, 12835. (glycine) 

(b) Mullin, J. M.; Gordon, M. S.  J. Am. Chem. Soc. 2009, submitted. (alanine) (c) 

Wood, G.P.F.; Gordon, M.S.; Radom, L.; Smith, D.M.  J. Phys. Chem. 2009, 

submitted.  (d) Bandyopadhyay, P.; Gordon, M.S.  J. Chem. Phys. 2000, 113, 

1104. (e) Jensen, J.H.; Gordon, M.S. J. Am. Chem. Soc. 1995, 117, 8159. 

4. (a) Webb, S. P.; Gordon, M. S. J. Phys. Chem. A 1999, 103, 1265. (menshuken) 

(b) Adamovic, I.; Gordon, M. S. J. Phys. Chem. 2005, 109, 1629. 

(SN2_EFP1DFT) 

5. Day, P.N.; Pachter, R.; Gordon, M.S.; Merrill, G.N. J. Chem. Phys. 2000, 112, 

2063. (b) Metropolis, N.; Rosenbluth, A.; Teller, A. J. Chem. Phys. 1953, 21, 

1087.  

6. Netzloff, H.M.; Gordon, M.S. J. Chem. Phys. 2004,121, 2711. (b) Li, H.; 

Netzloff, H.M.; Gordon, M.S. J. Chem. Phys. 2006, 125, 194103. (c) Pranami, G.; 

Slipchenko, L.V.; Lamm, N.H.; Gordon, M.S. Multi-scale Quantum Models for 

Biocatalysis: Modern Techniques and Applications. edited by T.-S. Lee and D. M. 

York Springer; Verlag; 2009.  

7. Day, P.N.; Jensen, J.H.; Gordon, M.S.; Webb, S.P.; Stevens, W.J.; Krauss, M.; 

Garmer, D.; Basch, H.; Cohen, D. J. Chem. Phys. 1996, 105, 1968.  

8. Adamovic, I.; Gordon, M.S. J. Phys. Chem. 2005, 109, 1629.  

9. Song, J.; Gordon. M. S.  unpublished. 

10. Webb, S.P.; Gordon, M.S. J. Phys. Chem. A 1999, 103, 1265.  

11. Pooja, A.; Gordon, M. S.; in preparation 



www.manaraa.com

!

!

"#$!

12. Yoo, S.; Zahariev, F.; Sok, S.; Gordon, M. S.; J. Chem. Phys. 2008, 129, 14112. 

13. Stone, A. J.; Alderton, M.  Mol. Phys. 1985, 56, 1047. (b) Stone, A. J. The Theory 

of Intermolecular Forces. Oxford University Press, London, UK, 1996. 

14. (a) Edmiston C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457. (b) Raffenetti, 

R. C.; Ruedenberg, K.; Janssen, C. L.; Schaefer, H. F. III. Theor. Chim. Acta 

1993, 86, 149. 

%#& '()!*+,-+,.!*&/0!12342,.!5&6&!!"#$%&'()&!!""#.!*+.!%7%7&!'8)!5933+::.!*&!;&!&,"-$%

."($%/"-$%01"23$4!!"#$.!56*7.!#<<&!'=)!5933+::!*&!;&!8$%-'9:$%&'()$%!"#%.!7;.!

>$%<&!

16.  (a) Adamovic, I.; Gordon, M.S. Mol. Phys. 2005, 103, 379. (b) Amos, R.D.; 

Handy, N.C.; Knowles, P.J.; Rice, J.E.; Stone, A.J. J. Phys. Chem. 1985, 89, 

2186. (c) Piecuch, P. Mol. Phys. 1986, 59, 1085. 

17. Li, H.; Gordon, M.S., Theor. Chem. Accts. 2006, 115, 385. (b) Li, H.; Gordon, 

M.S.; Jensen, J.H. J. Chem. Phys. 2006, 124, 214107. 

%?& '()!6:@A=B+,C2.!D&0!12342,.!5&6&!8$%<":=$%<'9:&!&''#.!6*.!"E<&!!'8)!F3+@G(H.!

5&I&0!12342,.!5&6&0!*+,-+,.!*&/&0!6G+J+,-!K&*&!8$%<'9:$%&'()&!&'''.!>>6.!E7LL&!

19. Tang, K.T.; Toennies, J.P. J. Chem. Phys. 1984, 80, 3726.  

20. (a) Slipchenko, L.; Gordon, M. S. in preparation. (b) Murrell, J. N.; Teixeira-Dias, 

J. J. C. Mol. Phys. 1970, 19, 521.(c) In the final form of this paper the overlap 

dispersion damping will be used. 

21. (a) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; 

Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; 

Dupuis, M.; Montgomery, J. A., Jr. J. Comput. Chem. 1993, 14, 1347. (b) 

Gordon, M.S.; Schmidt, M.W., Theory and Applications of Computational 

Chemistry, the first forty years; Elsevier; Amsterdam; 2005 

22. Nosé, S. Mol. Phys. 1984, 52, 255. B) Hoover, W. G. Phys. Rev. A 1985. 31, 

1695. (NooseHoover) 

23. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R.  J. Chem. Phys. 

1982, 76, 637. (velocity verlet) 

24. (a) Berthaut, F.  J. de Physique Rad. 1952, 13, 499-505. (b) Slipchenko, L.V.; 

Gordon. M.S. J.Comput.Chem. 2007, 28, 276. (Ewald Sums) 

25. (a) Hariharan, P. C.; Pople, J. A. Theoret. Chim. Acta 1973, 28, 213. (b) Krishnan, 

R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (c) Clark, 

T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. J. Comp. Chem. 1983, 4, 

294. 

26. Allen, M. P.; Tildesley, D. J. Computer Simulations of Liquids Oxford Science, 

Oxford. 1987. (Diffusion) 

27. Fanourgakis, G. S.; Schenter, G. K.; Xantheas. S. S. J. Chem. Phys. 2006, 125, 

141102. (Heat of VAP) 

28. Neumann, M.  Mol. Phys. 1983, 50, 841. (b) Jepsen, D. W. J. Chem. Phys. Lett. 

2000, 258, 121. (Dielectric constant) 

29. Soper, A. K. Chem. Phys. Lett. 2000, 258, 121. (Coord #) 

30. Neumann, M.  Mol. Phys. 1986, 57, 97. (Kirkwood factors) 

31. Motakabbir, K. A.; Berkowitz, M. J. Phys. Chem. 1990, 94, 8359. (Isothermal 

compressibility) 



www.manaraa.com

!

!

"#$!

32. (a) Luzar, A.; Chandler, D. Nature 1996, 379, 55. (b) Luzar, A.; Chandler, D. 

Phys. Rev. Lett. 1996, 17, 928. (c) Xu, H.; Stern, H. A.; Berne, B. J.  J. Phys. 

Chem. B 2002, 166, 2054. (H-bond life) 

33. Yujie, W.; Tepper, H. L.; Voth, G. A. J. Chem. Phys. 2006, 124, 024503. (coord 

#) 

34. Badyal, Y. S.; Saboungi, M.-L.; Price, D. L.; Shastri, S. D.; Haeffner, D. R.; 

Soper, A. K.  J. Chem. Phys. 2000, 112, 9206. (bulk dipole) 

35. Sorenson, J. M. et al. J. Chem. Phys. 2000, 113, 9149. (expirmental g(oo) 

36. Wagner, W.; Pruss, A. J. Phys. Chem. 2002, 31, 387. (heat of vap) 

37. Bieze, T. W. N.; van der Maarel, J. R. C.; Leyte, J. C. Chem. Phys. Lett. 1993, 

216, 56. (diffusion, alpha) 

38. Handbook of Chemistry and Physics, edited by R. C. Weast CRC, Cleveland, 

1977. (heat capactiy) (static dielectric) (kirkwood) 

39. %&'()%*'()+),!-./!0*1&2)(,!3./!45&67,!0./!89::)5,!-./!;<5=7,!0./!>&55=')++*,!0.!!"#

$%&'"#(%)*"!!""#,!+,,,!$?@A?A. (isothermal compressability) 

40. Yamell, J.L.; Katz, M.J.; Wenzel, R.G.; Koenig, S.H. Phys. Rev. A 1973, 7. 2130. 

Ar radial distribution 

41. Naghizadeh, J.; Rice, S. A. J. Chem. Phys. 1962, 36, 2710. Ar diffusion 

42. Brostow,W.; Sicotte, Y. Physica A, 1975, 80, 513. Ar Coordination number 

43. Sychev, V. V.; Vasserman, A. A.; Kozlov, A. D.; Spiridonov, G. A.; Tsymarny, 

V. A., Thermodynamic Properties of Neon, Argon, Krypton, and Xenon New 

York, Hemisphere, 1987. (Ar Heat of Vap) 

 



www.manaraa.com

!

!

"#$!

Figure 1. The gOO(r) radial distribution function for 64 water molecules.  
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Figure 2. Radial distribution function gArAr(r) for 64 argon molecules represented by the 

EFP2 method. 
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Table 1. Bulk properties of water, EFP/MP2 and EFP2 (Tang-Toennies damping, b=3.0) 
models compared to experiment and SPC/E. Properties and EFP models are defined in 
the computation details.a 

 units EFP1/MP2 EFP2 SPC/Eb Exp. 
<!> D 2.8 3.1 2.41 2.9g 
nc Rc=3.3 Å 4.32 4.45 4.34 4.26b 
"Hvap kcal/mol•K 11.2 11.61 10.76 10.52c 

Ds 10-5 cm2 s-1 2.42 2.17 2.41 2.3d 
eo  72 85 76.66 78.5e 
Gk  4.84 4.16 4.02 -- 
gk  3.25 2.79 2.70 2.9e 
#t 10-5 atm-1 4.46 4.84 4.46 4.58f 
$HB ps 2.1 2.5 2.3 -- 

aIn the final form of this paper the overlap dispersion damping will be used. 
b Ref 33 
c Ref 36 
d Ref 37 
e Ref 38 
f Ref 39 
g Ref 34 
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Table 2. Bulk properties of argon, EFP2 model and experiment. Properties and EFP2 

model are defined in the computation details. 

 units EFP2 Exp. 
nc Rc=5.5 Å 8.8 8.8a 
!Hvap kcal/mol•K 1.53 1.38b 

Ds 10-5 cm2 s-1 2.07 1.84c 
a Ref 42 

b Ref 43 

c Ref 41 
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GENERAL CONCLUSIONS 

 

Early theoretical chemistry research was focused on obtaining very accurate gas phase 

phenomena. Building on that foundation of systematically improvable ab inito methods and 

basis sets, forays into condensed phase phenomena have been the concentration of much 

research in the area for some time. Herein, the chapters of this dissertation have shown a 

breadth and depth of study within condensed phase theoretical chemistry. 

 In chapters three and four, the systematic solvation of alanine has allowed the 

determination of the liquid phase enthalpy of zwitterion formation from neutral alanine. 

Furthermore the effects on the water structures during the solvation process were explored. It 

is through such a systematic study that convergence of these properties may be evaluated. 

Often, when solvating a species, an ill-defined concept such as a first solvation shell is 

employed. Here precisely where the solvation shell becomes the dominant structure was 

presented along with an ensemble of representative structures through the addition of 1 -49 

waters. The number of waters required to solvate the neutral form of alanine is in the range of 

46-49 waters, while the zwitterion exhibits solvation at the addition of 42 waters.  

Chapters five and six focus not on QM/MM methods, but rather the use of fragmentation 

schemes which achieve near linear scaling with ~1kcal/mol accuracy relative to ab initio 

methods. While QM/MM methods have expanded the size of systems that are accessible to 

computations, the use of classical model potentials for the description of the environment can 

be a limiting factor, given that the electron density of the MM region and its impact on the 

QM region is not usually properly accounted for. Both of the fragmentation schemes 

employed, FMO and SFM, allow the investigation of bonded systems, and the clustered 

model of SFM remains a work in progress. By employing linear scaling methods, larges 
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systems such as proteins, surfaces, and clusters can be explored via ab initio methods while 

retaining accuracy of ~1kcal/mol relative to the full ab initio calculation. Further 

development of fragmentation schemes within a molecular dynamics system would allow 

linear scaling elucidation of condensed phase chemical phenomena. 

In chapter seven the use of molecular dynamics(MD) as a means to capture time 

dependent phenomena of liquid systems is presented.  Several properties such as pressure, 

diffusion, dielectric constant, and free energy are now available within the GAMESS suite. 

Several more properties, such as heat capacity and thermal expansion can be calculated via 

finite differencing by the end user. The EFP methods used within MD calculations have been 

shown to accurately capture the dynamical nature of liquid water; furthermore the EFP2 

method has been shown to describe argon and should be applicable to the investigation of 

other liquid systems. 

 The solvation of alanine has answered many of the basic questions. However, 

extension of this work to other amino acids may be considered. The transition from N to Z 

forms should not vary greatly (for uncharged R groups) from the requirement of seven waters 

since the majority of waters form along the hydrogen bonding NH3
+
 and COO

-
 groups. 

Where there is a charge center on the R group more waters may be required. It was shown 

that in order to determine the enthalpy of the N to Z alanine discretely solvated species of 

both forms is required. Investigation into this enthalpy for other amino acids does not need to 

be systematically, only to complete a first solvation shell with a continuum model as a third 

layer. 

 The extension of the molecular dynamics properties can be extended to include the 

contributions from molecules treated via quantum mechanics. These extensions should not be 
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overly complicated, but would most likely require further work on the linear scaling methods 

such as FMO and SFM in order to generate a simulation with statistical significance. 

Temperature of each substituent should be available not just the entire ensemble in order to 

avoid spurious temperature distributions. Visualization and calculation of external properties 

can be included in MacMolPlt or via programs such vmd which support GAMESS.  

Generalized free energy calculations such and alchemical perturbation or potential of 

mean force may be added to the MD code. A main concern thus far in using umbrella 

sampling and force biasing has been the self-consistent polarization term. It may not be 

necessary to have the DIPIT subroutine term kill a MD run. This term may not converge in 

the process of umbrella sampling unless great care is taken. Alchemical perturbation can be 

implemented by extended the current ability to turn on and off individual terms of the EFP2 

calculation. By using control over each EFP the interaction of an EFP can slowly be turned 

on and off, so long as the center of mass coordinates of the two fragments used in the 

alchemical perturbation are both are the same. Alchemical perturbation is preferable for use 

where the perturbation is in a constrained environment, while potential of mean force is 

preferable for use in systems with high degrees of freedom. 

The SFM method can be extended to include gradient and hessians via the same process 

of simple summation used for the energy. Extension of this methodology to clusters has 

proven difficult in identifying the source of deviation from ab inito calculations. Systems 

with large polarization effects may not be effectively treated by the current EFP 

implementation for the non-bonded energy. A first order response may be needed to fully 

capture these interactions. The SFM method may be used as a model in order to define 
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fragments automatically for other fragmentation methods such as the fragmentation 

molecular orbital method. 
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  Iowa State University and Ames Laboratory 

  Research Advisor: Prof. Mark S. Gordon 

  Research Area: Computational Quantum Chemistry 

Research Assistant, Department of Zoology and Genetics     05/98-08/99 

  Iowa State University 

  Research Advisor: Prof. Eric Henderson 

  Research Area: Protozoan Transformational Genetics 

 

Recent Research Interests: 

 The microsolvation of amino acids (alanine) with water (1-1024) , along with how the 

addition of water changes the favorability of neutral (gas phase) to zwitterion ( in 

solution). 

 The electronic structure interactions of protein substrate binding, are examined, and this 

information is used to develop novel binding substrates for proteins of unknown 

structure. 

 Development of new environmentally friendly high energy fuels by investigation of 

polynitrogen species using dynamic reaction path methods. 

 Expansion of the molecular dynamics (MD) code in GAMESS to include a complete set of 

property calculations and ensembles, along with completing an interface for QM/MM 

MD calculations. 

 Study of the behavior of amino acids on the silicon (100) surface using high level hybrid 

quantum mechanics/molecular mechanics methods.  The potential energy surfaces for 

reactions between amino acids are described.   

 Development of fast hybrid theoretical methods towards a goal of treating biological systems. 

 

Professional Experience: 

Visiting Scholar, Australian National University      09/08 

EFP:Theory and Practical notes. (Workshop) Sydney University, Australia  03/07 

Visiting Scholar, Australian National University      01/07-05/07 

Preparing Future Faculty             ’06                   

Teaching Assistant, General and Physical Chemistry, Iowa State University  08/04-05/05 
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Tutor for Organic and Physical Chemistry, Calculus based Physics   08/02-05/04 

 

Papers: 

 Vibrational Spectroscopy for Glycine adsorbed on Silicon Clusters: Harmonic and 

Anharmonic Calculations for Models of the Si(100)-2x1 Surface. D. Shemesh, J. Mullin, 

M. Gordon, R. B. Gerber, Chemical Physics, 2008, 347, 218-228. 

 Accurate methods for large molecular systems. Mark S. Gordon, Jonathan M. Mullin, 

Spencer R. Pruitt, Luke B. Roskop, Lyudmila V. Slipchenko, and Jerry A. Boatz, 

Submitted. J. Phys. Chem. 

  Alanine:Then there was Water. J. Mullin, and M. Gordon, Submitted. J. Phys. Chem. 

 Alanine:From puddle to ponds. J. Mullin, and M. Gordon, in preperation. 

 Systematic Molecular Fragmentation and the Effective Fragment Potential: An Efficient 

Method for Capturing Molecular Energies. J. Mullin, M. Collins, L. Roskop, M. Gordon, 

in preperation. 

 Molecular Dynamics with Generalized Effective Fragment Potentials. J. Mullin, M. Gordon, 

in preperation. 

 Free Energy methods with the Effective Fragment Potential. J. Mullin, M. Gordon, in 

preperation. 

 On the Energetics of polynitrogen Species. J. Mullin, and M. Gordon, in preperation. 

 

Presentations: 

 Molecular Dynamics with Generalized Effective Fragment Potentials. J. Mullin, M. Gordon, 

Poster, WATOC, Sydney, NSW, AU 

 Systematic Fragmentation of Clustered Systems. J. Mullin, M. Gordon, Poster, American 

Conference of Theoretical Chemistry(ACTC),  Northwestern University 

 Molecular Dynamics with Generalized Effective Fragment Potentials. J. Mullin, M. Gordon, 

Talk, 235th ACS National Meeting,  New Orleans, LA 

 What if all the kings men COULD put Humpty Dumpty back together Again? J. Mullin,M. 

Collins, M. Gordon, Poster, 235th ACS National Meeting,  New Orleans, LA 

 Hybrid Methods for Accurate Electronic Structure Calculations. J. Mullin,M. Collins, M. 

Gordon, Poster, 234th ACS National Meeting,  Boston, MA 

 Alanine:Then there was Water. J. Mullin, and M. Gordon, Talk, Royal Australian Chemical 

Institute Organic/Physical Conference, Adelaide, Australia 

 Alanine:Then there was Water J. Mullin, and M. Gordon, Poster session, Practicing 

Chemistry with theoretical tools, Maui, HI 

 Alanine:Then there was Water. J. Mullin, and M. Gordon, Talk, 232nd National ACS meeting, 

San Francisco, CA 

 PolyNitrogen Species:Fuel or Fizzle. J. Mullin, and M. Gordon, Talk, 232nd National ACS 

meeting, San Francisco, CA 

 Si(100):When Glycine Attacks. J. Mullin, and M. Gordon, Physical Chemistry poster session 

&  SciMix 232nd National ACS meeting, San Francisco, CA 

 PolyNitrogen Species:Fuel or Fizzle. J. Mullin  and M. Gordon, Talk, 39th Midwest 

Theoretical Chemistry Conference, Columbus, OH 

 poster presentations (posters previously shown), Iowa State University Chemistry 

Department Open House  (02/04, 02/05, 02/06, 02/08) 

 Alanine: Then there was Water. J. Mullin  and M. Gordon, Talk, 38th Midwest Theoretical 

Chemistry Conference, Columbia, MO 

 Alanine:Then there was Water. J. Mullin and M. Gordon, Physical Chemistry poster session 

230th National ACS meeting, Washington, DC 

 Competitive substrates of transmembrane proteins as a means to design new substances.  J. 

Mullin, R. Martin, and M. Gordon, Physical Chemistry poster session &  SciMix 228th 
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National ACS meeting, Philadelphia PA 

 Characterization of Alanine in Neutral and Zwitterion forms. J. Mullin, M.S. Gordon, poster 

presentation, REU poster presentations, Ames, IA. 

 Continuum Solvation Models and Amino Acids J.. Mullin, and M. S. Gordon, Argonne 

undergraduate symposium. 

 Tertrahymena Transformation, new approaches.  J. Mullin, E Henderson , STTG symposium 

Iowa State University 

 

Honors and Awards: 

Nelson Fellowship           08/08-07/09 

GAANN Fellowship          08/07-07/08 

Lindau meeting of Nobel Laureates, young researcher participant   06/06 

Frank J. Moore and Thoreen Beth Moore Fellowship     05/06 

Chemistry Department Academic Scholarship, Iowa State University   08/04-05/07 

Vocational Rehabilitation Scholarship, Iowa State University    08/00-05/09 

ACS Travel Awards          ’05  ’07  ‘08 

Chevron  Phillips Travel Award         ’05  ‘08 

Proctor and Gamble Travel Award        ’06  

              

Professional Societies: 

 American Chemical Society 

 American Physical Society 
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